全球生物多样性正以惊人的速度下降,迫切需要进行大规模监测以了解其变化及其驱动因素。虽然传统的物种分类学鉴定耗时耗力,但与基于 DNA 的方法相结合可以扩大监测活动的规模,以实现更大的空间覆盖范围和增加采样工作量。但是,当需要估计每个物种的个体数量和/或生物量时,基于 DNA 的方法仍然存在挑战。已有多种方法学进展可提高 DNA 宏条形码用于丰度分析的潜力,但仍需要进一步评估。在这里,我们讨论了实验室以及一些生物信息学对 DNA 宏条形码工作流程的调整,以了解它们从节肢动物群落样本中估计物种丰度的潜力。我们的综述包括标本拍照等实验室前处理方法、使用掺入 DNA 作为内标等实验室方法以及校正因子等生物信息学进展。我们得出的结论是,标本摄影与 DNA 条形码相结合目前最有可能实现对每个物种个体数量和生物量估计的估计,但诸如峰值和校正因子等方法是有希望进一步研究的方法。
摘要:在全球生物多样性面临的威胁不断升级的情况下,DNA 条形码是评估和监测物种多样性的重要方法。我探索了 DNA 条形码作为一种强大而可靠的生物多样性评估工具的潜力。首先全面回顾现有文献,深入研究 DNA 条形码的理论基础、方法和应用。广泛研究了各种 DNA 区域(如 COI 基因)作为通用条形码的适用性。此外,在 DNA 条形码的背景下评估了不同 DNA 测序技术和生物信息学工具的优势和局限性。为了评估 DNA 条形码的有效性,对包括陆地、淡水和海洋栖息地在内的各种生态系统进行了采样。从收集的样本中提取的 DNA 经过目标条形码区域的扩增和测序。将获得的 DNA 序列与参考数据库进行比较,可以对采样的生物进行识别和分类。研究结果表明,即使在形态鉴定具有挑战性的情况下,DNA 条形码也能准确识别物种。此外,它还揭示了隐蔽和濒危物种,有助于保护工作。我还通过分析遗传数据来研究遗传多样性模式和不同分类群之间的进化关系。这项研究有助于加深对 DNA 条形码及其在生物多样性评估中的适用性的了解。这种方法的优势(例如速度、准确性和成本效益)以及有待改进的领域被强调。通过解开遗传密码,DNA 条形码增强了我们对生物多样性的了解,支持保护计划并为生态系统的可持续管理提供基于证据的决策。
Aglieri,G.,Baillie,C.,Mariani,S.,Cattano,C.,Calò,A.,Turco,G.,Spatafora,D.,Di Franco,A.环境DNA有效地捕获了沿海鱼类社区的功能多样性。分子生态学,30(13),3127–3139。https://doi.org/10.1111/mec.15661 Albert,J。S.,Destouni,G.,Duke-Sylvester,S.M.,Magurran,A.E.(2021)。科学家对淡水生物多样性危机的人类警告。Ambio,50,85–94。https://doi.org/10.1007/s1328 0-020-01318 -8 Albert,J.S.,Tagliacollo,V.A。,&Dagosta,F。(2020)。新热带淡水鱼的多样化。生态,进化和系统学的年度审查,51(1),27-53。https://doi.org/10.1146/annur ev- ecols YS-01162 0-031032 BELLEMAIN,E.,CARLSEN,T.,BROCHMANN,C.,COISSAC,COISSAC,E.它是真菌的环境DNA条形码:一种硅方法揭示了潜在的PCR偏见。BMC微生物学,10(189),189。https:// doi。org/10.1186/1471-2180-10-189 Boyer,F.,Mercier,C.,Bonin,A.,Le Bras,Y.,Taberlet,P。,&Coissac,E。(2016年)。obitools:用于DNA ME- TABARCODING的UNIX启发的软件包。分子生态资源,16(1),176–182。https://doi.org/10.1111/1755-0998.12428 Brosse,S.,Charpin,N.,Guohuan,S.,Toussaint,A.A.,Tedesco,P。和Villeger,S。(2021)。Fishmorph:淡水鱼形态特征的全球数据库。(2021)。全球生态和生物地理学,30,2330–2336。https://doi.org/10.1111/GEB.13395 Cantera,I.,Cilleros,K.,Valentini,A.,A.,A.,Dejean,A.,Dejean,T.,Iribar,A. 为热带流和河流中的鱼类库存优化环境DNA采样工作。 科学报告,9(1),3085 M.,Salguero-Gómez,R.,Vásquez-Valderrama,M。和Toussaint,A。 遍布整个生命树的全球功能多样性。 科学进步,7(13),EABF2675。 https://doi.org/10.1126/sciadv.abf2675 Cilleros,K.,Valentini,A. 使用环境DNA(EDNA)在高分化环境中解锁生物多样性和保护研究:圭亚那的测试https://doi.org/10.1111/GEB.13395 Cantera,I.,Cilleros,K.,Valentini,A.,A.,A.,Dejean,A.,Dejean,T.,Iribar,A.为热带流和河流中的鱼类库存优化环境DNA采样工作。科学报告,9(1),3085 M.,Salguero-Gómez,R.,Vásquez-Valderrama,M。和Toussaint,A。遍布整个生命树的全球功能多样性。科学进步,7(13),EABF2675。https://doi.org/10.1126/sciadv.abf2675 Cilleros,K.,Valentini,A.使用环境DNA(EDNA)在高分化环境中解锁生物多样性和保护研究:圭亚那的测试
Withania Coagulans是印度的重要药用植物,从东地中海分散到南亚,但W. coagulans通常会被其他Withania物种误认为。准确地鉴定出具有药物重要的植物物种有助于其在医学中使用,并有助于保护全球受威胁或濒危植物的下降。目前的研究旨在使用五个在ICAR-ANAND的W. Coagulans的样本中使用五个遗传标记(RBCL,MATK,ITS,ITS,PSBA-TRNH和RPOB-TRNCGAR)为W. coagulans创建条形码。研究结果证实,PSBA和RBCL是研究W. ogulans的更好的条形码,即使改变地理位置,它也显示出100%的保护,而基因基因座RPOB,ITS和MATK帮助区分了Solanaceae家族的不同演变。它的GC含量最高,WCNB1的GC含量最高,WCNB2的GC含量为66.9%。与其他遗传标记相比,最大似然RPOB标记给出了最高的概率值(–889.38),其次是RBCL(–967.83)。研究结论将在药物领域使用,以开发基于DNA的W. cogulans植物的鉴定,以指出植物收集时的掺假。这项工作提供了对基于分子的识别和对W. ogulans的身份验证的见解。
抽象是一种有效的方法,用于快速分析物种关系,物种组成,以及与性状数据库(社区生物多样性的功能元素)结合使用,是DNA metabarcoding。传统的评估物种丰富度和丰度的方法受到分类识别的限制,可能会损害或破坏栖息地,并可能依靠使得难以找到小型或难以捉摸的物种的技术,从而对整个社区进行了估计。通过使用高通量测序(HTS)技术,该技术可以对与环境和社区样本收集的DNA条形码相关的数据进行顺序和提取数据。一种称为Metabarcoding的不断发展的技术利用了大量的DNA条形码序列和改进的DNA测序技术的吞吐量。脊椎动物饮食的分析是DNA元法编码最早的应用之一,该技术对于理解植物 - 授粉关系仍然有效。DNA研究的范围受到环境DNA降解的限制,尤其是在温暖的热带地区,经常仅存在很少的遗传物质残余物。DNA metabarcoding是一种仍在开发中的新技术。随着技术的发展和协议变得更加标准化,可以预期该方法将持续一段时间。元法编码预计将成为监测生态学和全球保护研究的关键工具,因为它得到了改进和更频繁的使用。关键字DNA元法编码,生物多样性,条形码,EDNA,METABARCODING,HTS
fi g u r e 2 edna测序读数的变化(Hellinger被改造并用作代理人的丰度),用于包括(A)Lee河和(B)Richmond Lock的Thames Sites的鱼类的鱼类。颜色强度和较大的点都表明了测序读数的丰度。丰富性基于3个生物学重复中的2种中存在的物种。
摘要:由于宿主之间观察到接触的困难,我们对野生动植物多层病原体传播系统的理解通常是不完整的。了解这些相互作用对于防止疾病引起的野生动植物的下降至关重要。高通量测序技术的扩散为更好地探索这些隐秘相互作用提供了新的机会。多层寄生虫Parelaphaphoptrongylus tenuis是一些驼鹿(Alces Alces)人口的主要死亡原因,受到中西部和加拿大东北部和东北地区局部灭绝的威胁。驼鹿合同P. tenuis通过食用受感染的腹足动物中间体宿主,但对哪种腹足动物的驼鹿消耗量知之甚少。为了获得更多的见解,我们在258种地理参与和时间分层的驼鹿粪便样本上使用了一种遗传元法编码方法,该方法是从美国中北部人口下降的2017年5月至2017年10月收集的。我们在五个阳性样品中检测到了三种腹足动物的驼鹿消耗。其中两个(点细分和螺旋瘤SP。)已对托管假单胞菌的能力进行了最小的研究,而一位(Zonitoides arboreus)是一位有记录良好的宿主。驼鹿消耗本文记录的腹足动物发生在6月和9月。我们的发现证明,驼鹿消耗了已知被P. tenuis感染的腹足动物物种,并证明粪便metabarcoding可以为多种病原体传播系统的宿主之间的相互作用提供新的见解。确定和提高了测试敏感性后,这些方法也可以扩展以记录其他多次疾病系统中的重要相互作用。关键词:脑虫,腹足动物,脑膜蠕虫,明尼苏达州,分子流行病学,驼鹿,溢出传播。
环境 DNA (eDNA) 宏条形码已成为检查鱼类群落的有力工具。在将基于 eDNA 的评估引入监管监测环境(例如欧盟水框架指令)之前,需要方法标准化。为了确保方法的准确性并满足监管标准,已经建立了各种采样、实验室和生物信息学工作流程。然而,全面监测鱼类的关键先决条件是选择合适的引物对,以准确识别给定水体中存在的鱼类。过去十年中,发表了针对不同遗传标记区域的各种鱼类特异性引物对。然而,尚未开展专门研究来评估常用鱼类引物对在评估中欧鱼类物种方面的性能。因此,我们创建了一个由 45 种中欧鱼类 DNA 组成的人工“模拟”群落,并检查了五对引物的检测能力和可重复性。我们的研究重点介绍了引物选择和生物信息学过滤对 eDNA 宏条形码结果的影响。在我们研究中评估的五对引物中,tele02(12S 基因)引物对是中欧淡水鱼 eDNA 元条形码的最佳选择。此外,MiFish-U(12S)和 SeaD NA-mid(COI)引物对表现出良好的检测能力和可重复性。然而,特异性较低的引物对(即针对脊椎动物)被发现不太可靠,并产生大量假阳性和假阴性检测。我们的研究说明了如何通过精心选择引物对和生物信息学流程使 eDNA 元条形码成为鱼类监测更可靠的工具。
马来虎 ( Panthera tigris jacksoni ) 是马来西亚半岛的极度濒危物种。为了模拟老虎不每天捕猎的野外环境,许多野生动物保护区并不每天喂食老虎。然而,禁食对圈养马来虎肠道菌群的影响仍然未知。这项研究旨在通过比较禁食和正常喂养条件下圈养马来虎的微生物群落来表征其肠道菌群。这项研究是在马来西亚半岛的马六甲动物园进行的,马来虎每周一禁食。总共收集了 10 个马来虎粪便样本、2 个孟加拉虎(外群)和 4 个狮子(外群)的粪便样本,并进行了针对 16S rRNA V3-V4 区域的宏条形码分析。总的来说,我们在马来虎样本中确定了 14 个门、87 个科、167 个属和 53 种肠道微生物组。本研究发现的潜在有害细菌属包括梭杆菌、拟杆菌、狭义梭菌 1、
牛津纳米孔 Flongle 简介:本方案描述了我们使用纳米孔 Flongle 进行 DNA 元条形码编码的方法。它涵盖了纳米孔测序和 DNA 元条形码编码的简要背景、我们为元条形码编码设计的引物、我们的 PCR 方法、纳米孔文库制备和样品加载以及使用 Ontbarcoder 应用程序进行的数据分析。牛津纳米孔测序:牛津纳米孔测序仪 1 是第三代实时长读测序仪,越来越受欢迎。它相对便宜(起价 1000 美元),小巧便携,可生成长读长(1000 个碱基对),并实时测序,这意味着您可以在测序反应进行时下载和分析序列数据。纳米孔测序的工作原理是检测 DNA 穿过纳米孔时流动池上纳米孔中电荷的变化。DNA 核苷酸(A、C、T、G)在穿过纳米孔时会以不同的方式改变电荷,因此机器可以根据孔电荷的变化确定 DNA 链的序列。 Flongle:纳米孔流动槽有两种类型,常规流动槽适用于大型项目(成本约为 1,000 美元),Flongle 2 流动槽适用于小型实验(每个流动槽成本约为 90 美元)。虽然 Flongle 流动槽成本不算太高,但对单个样本进行测序还是太贵了。常规 Sanger 测序每个样本的成本为 2-6 美元!因此,必须将样本汇集在一起进行测序,也就是说,将几个或多个样本一起装入单个 Flongle 流动槽中。为了稍后分离样本,需要用条形码标记样本,以便识别它们。DNA 宏条形码:DNA 条形码是使用参考序列来识别物种。对指定的条形码基因(传统上是线粒体 COI 基因)进行测序,然后将获得的序列与条形码序列数据库进行比较。DNA 宏条形码是指在单个测序反应中汇集许多个体,以使用 DNA 条形码识别物种。 Nanopore 测序仪可用于 DNA 宏条形码,并在一次测序运行中生成多个样本的序列。我们实验室中的 DNA 宏条形码:在我们的实验室中,我们使用带有 Flongle 流动槽的 Nanopore 测序仪进行 DNA 宏条形码。使用苯酚-氯仿 3 、Qiagen 4 甚至 Chelex 5(昆虫)方案提取 DNA。然后我们进行 PCR 以扩增 COI DNA 条形码基因(也可以使用其他基因,如 12S 和 16S 6 ),在琼脂糖凝胶上运行产物以查看如何