在本演讲中提到的LFP范围研究已进行了评估项目的技术和财务可行性。在Avenira能够提供经济发展案件的任何保证之前,需要进一步的评估工作,包括可行性研究(“ BFS”)。Avenira得出结论,有合理的理由可以提供本演讲中包含的前瞻性陈述,并且有合理的依据可以期望它能够为LFP项目的开发提供资金。投资者不应仅根据LFP范围研究的结果做出任何投资决策。虽然Avenira认为所有物质假设是基于合理的理由,但无法确定它们将被证明是正确的,也不能实现这项LFP范围范围研究所指示的结果范围。
1970年代。6迄今为止,含有羰基的有机物,例如奎因酮,7种芳香族酰胺,8种赤道,9和酮,已被探索为libs的电极材料。基于喹酮的小分子在研究界具有高理论特定的能力和有希望的氧化还原稳定性,并且可以从生物量中采用。7,11然而,与最先进的易神经阴极材料相比,尚未发现小奎因酮在实际的氧化还原电位和循环稳定性方面很可行。12 - 14通过不同的方法通过不同的方法来调节其分子结构,包括使用R-组的功能化,15融合芳族芳族16或杂芳族环17一起使用,并结合其他氧化还原活性的碳组群。18
Brilloni,A.(2022)。易于使用Binders-procoss-wather-wather Pocorssoperable,易于使用锂离子粉末。Electrochicta,418,1403666-140386 [10,1016/j.lectate.2022,14036]。
当时,IBU-tec 代表客户成功进行了 LFP 试验,随后委托生产了多达 4,000 吨的阴极活性材料。从那时起,我们回转窑生产的材料已在全球众多应用中证明了其品质。
在本应用说明中,我们演示了 Dragonfly 3D World 中可用于分析电池高分辨率 X 射线 CT 扫描的工具。可以检查图像,并对任何感兴趣的特征进行手动测量和注释,例如阴极和阳极之间的悬垂距离。可以通过深度学习实现单个阳极和阴极组件的分割,并演示了对所得分割区域的测量。
消除正极材料中关键金属的使用可加速全球可充电锂离子电池的普及。有机正极材料完全来自地球上丰富的元素,原则上是理想的替代品,但由于导电性差、实际存储容量低或循环性差,尚未对无机正极构成挑战。在这里,我们描述了一种层状有机电极材料,其高电导率、高存储容量和完全不溶性使锂离子可以可逆地嵌入,使其能够在电极层面上在所有相关指标上与无机基锂离子电池正极竞争。我们优化的正极可存储 306 mAh g –1 正极,能量密度为 765 Wh kg –1 正极,高于大多数钴基正极,并且可以在短短六分钟内完成充放电。这些结果证明了可持续有机电极材料在实际电池中的操作竞争力。
在锂离子电池阴极N. Balke 1,S。Jesse 1,A。N. Morozovska 2,E。Eliseev 3,E。Eliseev 3,D。W. Chung 4,Y. Kim 5,L。Adamczyk 5,R。E. E. Garcia 4,N。Dudney 5和N.Dudney Internal Interge Nation Interge N.实验室,田纳西州橡树岭,美国37831,2,乌克兰国家科学学院半导体物理研究所,乌克兰41,PR。nauki,03028乌克兰,乌克兰3,材料科学问题研究所,乌克兰国家科学学院,乌克兰3,乌克兰3,Krjijanovskogo,Krjijanovskogo,03142基辅,乌克兰,乌克兰,4材料工程学院,Purdue University,Purdue University,Purdue University,Purdue University,West Lafayette田纳西州37831,美国。实现Li进出阴极的运动是新电池设计的关键组成部分,但由难以识别的纳米级工艺主导。我们开发了一种基于扫描探针显微镜的方法,电化学应变显微镜(ESM),以研究薄膜licoo 2电极材料中的电偏置诱导的锂离子传输。ESM利用了偏置控制的锂离子浓度和电极材料摩尔体积之间的固有联系,从而为具有纳米计精度的新型研究提供了能力。使用ESM,可以在相关的长度尺度上研究局部电化学过程,以揭示结构,功能和液压电池性能之间的复杂相互作用。这项工作表明了如何使用ESM来研究分层阴极材料(例如Licoo 2)中的锂离子运输。N.B.N.B.通过其分层结构,锂离子传输和相应的体积变化很大程度上取决于Licoo 2晶粒的晶体学方向。使用ESM,可以鉴定具有增强锂离子动力学的晶粒和晶界。显着性的可再生能源需求日益增长与对当前未按照许多应用所需的性能执行的高级储能技术的需求密切相关。储能系统的功能(例如锂离子电池)基于并最终受到离子流的速率和定位,以不同的长度尺度从原子上的原子到晶粒到接口。在这些长度尺度上理解离子运输过程的根本差距极大地阻碍了当前和未来电池技术的发展。ESM的开发已经打开了以前从未达到的水平来了解锂离子电池的途径。有关用ESM获得的本地锂离子流的独特信息将不可避免地导致电池应用材料开发的突破。了解离子流,材料属性,微结构和缺陷之间的相互作用是电池操作的关键,可用于优化设备属性并了解电池褪色过程中发生的情况。信用研究是作为流体界面反应,结构和运输(第一)中心的一部分,这是一个能源边界研究中心,由美国能源部基本能源科学办公室资助,基础能源科学办公室,奖励编号ERKCC61(N.B.,L.A.,L.A.R.E.G.R.E.G.以及美国能源部基础能源科学办公室的一部分,美国能源部CNMS2010-098和CNMS2010-099(N.B.,S.J。)。还承认亚历山大·冯·洪堡基金会。和D.W.C.感谢NSF Grant CMMI 0856491的支持。“纳米尺度的电化学插入和锂离子电池材料的扩散映射” N。Balke,S。Jesse,A。N. Morozovska,E。E. Eliseev,D。W. Chung,Y。Kim,Y。Kim,L。Adamczyk,R。E. E.García,N。Dudney和S.V.kalinin,nat。纳米技术。5,749-754(2010)。5,749-754(2010)。
(283 mAh g -1 , 960 Wh kg -1 ) 19 , 层状 Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 (~270 mAh g -1 , ~950 Wh kg -1 ) 20 ,
锂离子电池(LiB)由正极、负极、电解液、隔膜等组成。将活性物质、导电剂、粘结剂等在有机溶剂中混合的浆体涂敷在金属膜(集流体)上,经干燥后形成电极。N-甲基-2-吡咯烷酮(NMP)是溶剂型浆体中使用的有机溶剂,尤其在正极的质量控制中,需要在干燥过程中检测正极中NMP的残留量。本文介绍了一种利用顶空法GC-FID简便分析锂离子电池NCM(镍钴锰三元材料)正极中残留NMP的方法。此外,还给出了利用GC-MS定性分析NCM正极中残留的其他溶剂的结果,以及对采用不同干燥工艺的五种正极中残留溶剂量的比较。