用廉价和丰富的锌代替镍可能使高温钠氯化物(NA-NICL 2)电池成为一种经济上可行且在环境上可持续的可持续选择,用于用于平稳应用的大规模储能。然而,改变活性阴极金属会显着影响阴极微结构,电化学反应机制,细胞成分的稳定性和特定的细胞能。In this study, we investigate the influence of cathode microstructure on energy efficiency and cycle life of sodium-zinc chloride (Na-ZnCl 2 ) cells operated at 300 ◦ C. We correlate the dis-/charge cycling performance of Na-ZnCl 2 cells with the ternary ZnCl 2 -NaCl-AlCl 3 phase diagram, and identify mass transport through the sec ondary NaAlCl 4 electrolyte as an important contribution to the细胞电阻。这些见解可以设计量身定制的阴极微观结构,我们将其应用于具有50 mAh/cm 2的面积容量的阴极颗粒和阴极颗粒的细胞。在阴极颗粒中,我们在C/5(10 mA/cm 2)时证明了> 200个循环,以> 83%的能源效率传递了9 AH/CM 2的总容量。我们将阴极微结构中锌颗粒的粗化是降低能效性降解的主要原因。我们的结果为进一步增强Na-Zncl 2细胞的基础设定了基础,例如,通过使用合适的添加剂或结构元素来稳定阴极微观结构。
近期电动汽车销量持续飙升,导致电动汽车电池材料供应链的循环性受到严格审查。创新的回收工艺或直接回收可以降低回收成本,是从报废 (EoL) 电动汽车电池中回收资源的一种可能解决方案。通过电化学方式将锂送回阴极或电化学再锂化是一种在直接回收过程中恢复 NMC 材料 (EoL) 锂含量的可能技术。这项研究为开发一种电化学再锂化方案提供了必要的理解,该方案将恢复通过锂库存损失 (LLI) 达到 EoL 的插层阴极材料的锂损失,而不是通过其他降解机制,如活性材料损失 (LAM)、阳离子混合或相变。已经制备并表征了电化学老化的 NMC 阴极材料,以确定 EoL 材料结构降解和锂损失的程度。使用基于模型的实验过程来确定最佳电化学再锂化方案,以最大限度地缩短再锂化 EoL 材料所需的时间并最大限度地提高锂的回收量。根据方案实现快速锂嵌入、保持 EoL 材料结构均匀性和完全恢复锂含量的能力对方案进行评估。利用新颖的扫描电压步骤,在高温下确定了最佳方案。
Jiangtao Hu 1 , Hongbin Wang 1 , ∗ , Biwei Xiao 2 , ∗ , Pei Liu 1 , Tao Huang 1 , Yongliang Li 1 , Xiangzhong Ren 1 , Qianling Zhang 1 , ∗ , Jianhong Liu 1 , ∗ , Xiaoping Ouyang 3 and Xueliang Sun 4 , 5 , ∗ 1 Graphene Composite Research Center, College of深圳大学化学与环境工程,深圳518060,中国; 2 Grinm(广东)高级材料与技术研究所,佛山528051,中国; 3西安格坦大学材料科学与工程学院,中国411105; 4西安大略大学机械与材料工程系,安大略省N6A 5B9,加拿大和5东部高级研究所,东部技术研究院,宁波315020,中国
Liu等。 报道了碳纳米基碳基于氧化碳(LICOO 2)的阴极,其特异性c c含量为90 mA H g -1。 19然而,碳纳米ber不仅被用作添加剂而不是当前的收集器,而且还需要缓慢的干燥铸造过程来去除增塑剂(丙烯碳酸盐)。 最近,已经研究了通过电泳沉积(EPD)和高压灭菌方法将阴极材料涂在CFS上,以用于结构电池中。 11,23,24 Hagberg等。 reported that LiFePO 4 coated onto polyacrylonitrile (PAN)-based CFs tow via EPD method delivers a speci c capacity of 108 mA h g − 1 at 0.1 C. 11 However, the coating performance was dependent on the distance between Pt wire (counter electrode) and CFs (working electrode) at EPD instrumental set-up, making it di ffi cult to obtain a high yield.Liu等。报道了碳纳米基碳基于氧化碳(LICOO 2)的阴极,其特异性c c含量为90 mA H g -1。19然而,碳纳米ber不仅被用作添加剂而不是当前的收集器,而且还需要缓慢的干燥铸造过程来去除增塑剂(丙烯碳酸盐)。最近,已经研究了通过电泳沉积(EPD)和高压灭菌方法将阴极材料涂在CFS上,以用于结构电池中。11,23,24 Hagberg等。 reported that LiFePO 4 coated onto polyacrylonitrile (PAN)-based CFs tow via EPD method delivers a speci c capacity of 108 mA h g − 1 at 0.1 C. 11 However, the coating performance was dependent on the distance between Pt wire (counter electrode) and CFs (working electrode) at EPD instrumental set-up, making it di ffi cult to obtain a high yield.11,23,24 Hagberg等。reported that LiFePO 4 coated onto polyacrylonitrile (PAN)-based CFs tow via EPD method delivers a speci c capacity of 108 mA h g − 1 at 0.1 C. 11 However, the coating performance was dependent on the distance between Pt wire (counter electrode) and CFs (working electrode) at EPD instrumental set-up, making it di ffi cult to obtain a high yield.
尽管有机阴极材料场迅速扩张,但仍然缺乏通过易于合成的材料,具有稳定的循环和高能量密度。在此,我们报告了可以用作阴极材料的市售前体中的小有机分子的两步合成。氧化的四喹氧化物毒素(OTQC)是通过将附加的奎诺酮氧化氧化氧化氧化氧化氧化氧化氢活性中心引入结构中的四喹啉氧化菌(TQC)衍生而来的。修饰增加了材料的电压和容量。OTQC的高特异性容量为327 MAHG -1,平均电压为2.63 V,而Li -Ion电池中的Li/Li +。对应于材料水平上860 WHKG -1的能量密度。此外,该材料表现出极好的循环稳定性,在400个循环后的容量保持量为82%。同样,使用水解物中的TQC与TQC相比,OTQC表现出增加的平均电压和特异性能力,达到326 MAHG -1的特异性容量,平均电压为0.86 V,Vs. Zn/Zn 2+。除了良好的电化学性能外,这项工作还对与容量衰减有关的氧化还原机制和降解机制提供了额外的深入分析。
不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
摘要。储能技术成为支持电气化议程的关键方面。在过去十年中,可再生能源和电动汽车的兴起趋势会产生意外的电池技术需求。锂离子电池(LIB)已被吹捧为一种有关储能开发的革命性技术。除了LIB由于其有前途的性能,LIB还是对电子应用的表现非常出色,它在质量生产的可伸缩性方面也广为人知。尽管预测LIB仍将在未来十年内主导市场,但是电池千千快事的增长仍然很慢。生产过程的难度和所使用的机器数量成为支持行业规模端到端电池生产的主要不情愿因素。因为电池生产链缺乏精确的计算可能会影响业务的可持续性。因此,有必要调查从实验室分为行业规模的扩大电池阴极生产。该研究的对象研究是印尼领先的电池研究所,国家电池研究所。通过考虑原材料,机械,功耗和人力等成本结构因子(例如成本结构因子),将计算集中在NMC 811阴极活动材料上。该结果成功估计了每批NMC 811阴极100公斤生产的总成本,或一年中的36吨。注意,本手稿中讨论的原材料成本有限的数据,而机械,功耗和人力方面将在另一篇文章中分别讨论。
6K Energy Tennessee,LLC(6K)提议构建等离子低成本的超级可持续阴极活动材料(PlusCAM)项目。6K PlusCAM项目的目标是证明在2025年准备在2025年使用其专利的6KUnimelt®微波等离子体处理技术生产的工厂中,可以在国内生产多种电池化学的能力。该设施将可持续生产NMC811,产生零危险废物(氨/硫酸盐)和温室气体(GHG)的70%,同时仅使用10%的水和传统电池材料生产方法使用的能量的30%。两种材料的生产成本将低于来自中国的材料。6K的项目需要为新的锂离子电池提供额外的关键材料,从而减少了全国性空气污染物和人为引起的温室气体的总体排放。一旦运营,该设施将产生足够的材料每年提供100,000多个电动汽车(EV)。(此数量仅是一个近似值,并且取决于电动电气电池的规格和客户需求。重要的是要注意,并非所有产品都会分配给电动电池电池)。DOE的行动是为6K提供50,000,000美元的联邦成本份额,达到177,808,345美元的总项目价值。
可以富集各种类型的电活性微生物,形成降低电荷转移耐药性的生物心理,从而加速电子在微生物燃料电池中具有高氧化还原电势的重金属离子。微生物作为生物大道上的生物催化剂可以减少重金属还原所需的能量,从而使生物学能够实现较低的还原性发作潜力。因此,当这种重金属取代氧气(如电子受体)时,重金属的价状态和形态在生物学的还原作用下变化,从而意识到重金属废水的高效处理。这项研究回顾了生物疗法的微生物群落的机制,主要影响因子(例如电极材料,重金属的初始浓度,pH和电极电位的初始浓度),并讨论了生物降压物中的电分布以及微生物电极和重金属(电子受体(电子受体)之间的竞争)。生物心降低重金属还原中的电化学过电势,从而允许使用更多的电子。我们的研究将提高对生物座电子传输机制的科学理解,并为使用生物座净化重金属废水提供理论支持。
消除正极材料中关键金属的使用可加速全球可充电锂离子电池的普及。有机正极材料完全来自地球上丰富的元素,原则上是理想的替代品,但由于导电性差、实际存储容量低或循环性差,尚未对无机正极构成挑战。在这里,我们描述了一种层状有机电极材料,其高电导率、高存储容量和完全不溶性使锂离子可以可逆地嵌入,使其能够在电极层面上在所有相关指标上与无机基锂离子电池正极竞争。我们优化的正极可存储 306 mAh g –1 正极,能量密度为 765 Wh kg –1 正极,高于大多数钴基正极,并且可以在短短六分钟内完成充放电。这些结果证明了可持续有机电极材料在实际电池中的操作竞争力。