手性色谱法是分离对映异构体,用于药物应用,生物技术和环境分析的关键的至关重要技术。但是,传统方法通常在精确,效率和可扩展性方面面临挑战。人工智能(AI)和机器学习(ML)与手性色谱的整合提出了克服这些局限性的变革性方法。AI和ML算法可以优化色谱条件,增强手性选择器的设计并改善实时数据分析,从而提高精度和操作效率。通过利用数据驱动的见解,这些技术可以更准确地预测分离结果和简化方法开发。本摘要回顾了手性色谱中AI和ML应用中当前的进步,讨论了它们对优化色谱过程的影响,加速方法开发以及实现更高的分辨率和可重复性。AI和ML的合并不仅解决了现有的挑战,而且还为手性分离技术创新开辟了新的途径。
bhimewalpriya@gmail.com摘要:高性能液相色谱法(HPLC)是一种重要的定性和定量技术,通常用于估计药物和生物样品。它是用于药物成分质量控制的最通用,最安全,最可靠,最快的色谱技术。本文编写了HPLC的不同方面的评论,例如原理类型,仪器和应用。高性能液相色谱在临床实验室中起着重要作用,用于分离和定量不同体液中的生物标志物。HPLC的发展涉及四个基本步骤;侦察,优化,鲁棒性测试和验证。该技术用于分析其纯度的药物和药物,并维持药品的最高标准,以帮助患者患有医疗问题。验证方法是用于确认用于特定测试的分析程序的过程。根据ICH指南验证高性能液相色谱法涵盖了验证的所有性能特征,例如准确性,精度,特异性,线性,线性,范围,检测极限,定量限制,稳健性,系统适用性。高性能液相色谱方法的限制,公共健康重要性和验证是自动化过程变得复杂,具有较低的分离功率,并且昂贵但高性能液相色谱法是现代诊断技术在所有领域都使用。关键字:HPLC,色谱,流动阶段
腺相关病毒(AAV)是提供基因疗法以治疗各种疾病的领先平台。因此,高级制造过程的需求越来越多,以跟上需求。AAV载体的有效且可扩展的纯化对于临床和商业成功至关重要。sartobind®膜色谱消耗品对于包括AAV矢量在内的大颗粒的纯化尤其有利。由于其主要是固有的对流流,膜与基于树脂的色度图相比,膜具有显着降低的质量转移性。因此,由于低背压轮廓,它们可以以较高的流速进行操作。此外,膜色谱消耗品提供易于处理,简单的就场过程,并且可线性扩展。
应使用溶剂系统提取样品,该系统可从样品基质中以目标浓度获得最佳、可重复的分析物回收率。提取溶剂的选择取决于目标分析物,没有一种溶剂可以普遍适用于所有分析物组。无论使用哪种溶剂系统(包括本方法中特别列出的溶剂系统),分析人员都必须证明其对目标分析物在目标浓度下的充分性能。至少,这种证明将包括方法 3500 中描述的使用干净参考基质的初步熟练程度证明。方法 8000 描述了可用于为此类证明以及基质加标和实验室控制样品结果制定性能标准的程序。
•收到您的注册后,我们将向您发送注册确认。•我们将与您联系,以了解您并确定您的课程目标。我们很乐意帮助您检查PC/笔记本电脑的适用性。•大约课程前一周,您将收到带有印刷课程文档的PSS的包裹。•活动发生前一天,您将收到带有访问链接的电子邮件。•培训本身是互动的,您有时间和机会在演讲和实践会议期间提出问题。请确保您有一个麦克风,以便您可以与我们交谈。•您将在培训后一天获得出席证书。
使用重组腺相关病毒(RAAV)作为基因疗法的递送方法,继续使用数百项正在进行的临床试验和一些最近的批准成功。RAAV应用的多样性范围从影响小患者人群的罕见疾病到更普遍的遗传性疾病,例如血友病。剂量从〜4E11 VG/眼睛的视网膜下给药到3.5E14 VG的剂量差异很大[1]。从制造业的角度来看,该领域已转向了Raav的生产和纯化方法。上游方法通常使用HEK293细胞的转染,并且滴度通常在1-2e10 Vg/ml中使用,尽管最近报道了2000 l量表的高达6E11 VG/mL的较高滴度[2]。大剂量和/或患者种群需要这些较高的滴度来满足这些疗法的需求并降低成本。对于RAAV纯化,该领域的大多数已移至使用亲和力捕获色谱步骤[3]的可扩展过程,并通常使用Poros™Capturelect™AAVX树脂。在这项工作中,利用了多种AAV血清型的动态结合能力(DBC)数据,以估算使用AAVX树脂的最佳生产力。对符合最大处理时间和树脂利用率的过程条件和柱几何形状的分析,用于两种情况,代表了用于临床制造的当前滴度和用于商业制造量表的高滴度。
更深入地了解色谱吸附剂的纳米级和中观级结构以及介质中蛋白质的分布,对于从机制上理解使用这些材料的分离过程至关重要。使用传统技术来表征这种规模的介质结构和其中的蛋白质吸附具有挑战性。在本研究中,我们提出了一种新颖的树脂表征技术,该技术能够在典型的色谱条件下原位测量树脂内吸附蛋白质层的结构。设计并制造了一个石英流通池,用于小角度中子散射 (SANS),以便在单克隆抗体吸附过程中测量二氧化硅基蛋白质 A 色谱树脂的纳米级到中观级结构。我们能够使用对比匹配方法实时检查不同蛋白质负载和洗涤缓冲液下树脂的孔间(˜ 133 nm)和孔径(˜ 63 nm)相关性以及平面吸附抗体分子(˜ 4.2 nm)相关性。当将 0.03 M 磷酸钠与 1 M 尿素和 10% 异丙醇缓冲液(pH 8)作为洗涤缓冲液引入系统时,它会破坏系统的秩序,导致吸附抗体部分展开,这可以通过平面蛋白质相关性的丧失来证明。该方法为研究色谱树脂内的纳米级结构和配体固定提供了新方法;也许最重要的是了解在复制色谱柱的样品环境中,在不同流动相条件下吸附蛋白质在介质中的原位行为。