抽象背景:癌症染色体不稳定性的主要驱动力是复制应力,DNA复制的减慢或失速。尚不清楚如何连接复制应力和基因组不稳定性。蚜虫蛋白诱导的复制应力会在常见的脆弱部位诱导分裂,但是易于脆弱的确切原因,并且没有充分探索复制应力的急性基因组后果。结果:我们表征单个二倍体非转化细胞中的DNA拷贝数改变(CNA),这是由一个细胞周期在蚜虫或羟基脲存在下引起的。产生了多种类型的CNA,与不同的基因组区域和特征相关,观察到的拷贝数景观在蚜虫蛋白和羟基脲诱导的复制应力之间是不同的。将CNA与基因表达和单细胞复制时间分析的耦合细胞类型分析指向蚜虫中最复发的染色体尺度CNA的致病性大基因。这些在RPE1上皮细胞中的7号染色体上聚集在染色体上,但染色体在BJ成纤维细胞中。染色体臂水平CNA还会产生含有这些染色体的染色质和微核。结论:由复制应力驱动的染色体不稳定性通过局灶性CNA和染色体臂尺度的变化发生,后者仅限于很小的子集染色体区域,潜在地倾斜了癌症基因组的进化。复制应力的不同诱导者导致独特的CNA景观,从而提供了机会,从而得出了特定复制应力机械的拷贝数签名。单细胞CNA分析揭示了复制应力对基因组的影响,从而提供了对癌症中染色体不稳定性的分子机制的见解。
染色体工程已在酵母中成功尝试,但在包括哺乳动物在内的高等真核生物中仍然具有挑战性。在这里,我们报告了小鼠中的程序性染色体连接,这导致在实验室中产生了新的核型。使用单倍体胚胎干细胞和基因编辑,我们融合了两条最大的小鼠染色体,即染色体 1 和 2,以及两条中等大小的染色体,即染色体 4 和 5。染色质构象和干细胞分化受到的影响最小。然而,携带融合染色体 1 和 2 的核型导致有丝分裂停滞、多倍体化和胚胎致死,而由染色体 4 和 5 组成的较小融合染色体能够传递给纯合后代。我们的结果表明在哺乳动物中进行染色体水平工程的可行性。
最近的研究表明,不仅基因,而且整个染色体都可以使用定期间隔短的短膜重复序列(CRISPR)(CRISPR) - Crisper相关的蛋白9(Cas9)1 - 5进行设计。在植物育种中应用染色体重组的主要目标是操纵遗传交换6。在这里我们表明,使用染色体重组几乎可以在整个染色体中抑制减数分裂重组。我们能够诱导含有> 17 MB的染色体片段的可遗传反转,该片段包含着丝粒,并覆盖了拟南芥生态型Col-0的大部分染色体2。只有2和0.5 MB长的端粒末端保留在其原始原产中。在与生态型LER-1的杂交后代的单核苷酸多态性标志物分析中,我们检测到倒置的chrosome区域内的跨界群的大量降低,并伴随着交叉转移到远程端的末端。在反转中检测到的几种遗传交换都是源自双跨界的。这不仅表明可遗传的遗传交换可以通过间染色体配对来进行,而且还仅限于生存后代的产生。群集定期间隔短的短质体重复序列(CRISPR) - 基于危机相关的蛋白质(CAS)基因编辑已彻底改变了植物生物学和育种7。正在开发越来越多的工具来微调单基因和多个基因修饰8 - 10。能够改变染色体上基因的顺序也增加了一个新的特征控制水平:遗传联系的破裂11。为了将有吸引力的特征结合在单个培养基中,育种者通过减数分裂重组12之间的跨亲戚(CO)依赖于父母同种染色体之间的跨界(CO)12。众所周知,诸如倒置等染色体重排,通过抑制重排的区域13 - 18的CO来调节沿染色体的重组景观。例如,在果蝇中,所谓的平衡器染色体的特征是多种替代和其他重排,被广泛使用,导致抑制逆转杂合子中的减数分裂重组18。泛基因组的研究发现,自然染色体后序列在许多农作物物种中都是普遍存在的,并且在驯化4、19 - 24中发挥了重要作用。尽管它们看似善良,但反转也会导致积极影响,例如通过防止重组25来保护有利的等位基因组合。因此,CRISPR – CAS对染色体重排的有针对性诱导具有改变减数分裂重组模式的潜力。通过恢复1.1 MB大小的自然
自从现代人的祖先与尼安德特人的祖先分离以来,大约 100 种氨基酸替换传给了几乎所有现代人。这些变化的生物学意义在很大程度上是未知的。在这里,我们研究了三种蛋白质中的所有六种氨基酸替换,这三种蛋白质已知在动粒功能和染色体分离中起关键作用,并在发育中的新皮质的干细胞中高度表达。当我们将这些现代人类特异性替换引入小鼠时,其中两种蛋白质 KIF18a 和 KNL1 中的三种替换会导致中期延长,并减少发育中皮质顶端祖细胞的染色体分离错误。相反,祖先替换会导致人类脑器官中的中期长度更短和染色体分离错误更多,与我们在黑猩猩脑器官中发现的情况类似。这些结果表明,现代人类与尼安德特人分化后,大脑皮层发育过程中染色体分离的保真度得到了提高。
硬骨鱼类是研究性染色体和性别决定 (SD) 基因的重要模型,因为它们呈现出多种性别决定系统。在这里,我们使用 Nanopore 和 Hi-C 技术对 YY 南方鲶鱼 (Silurus meridionalis) 进行高连续性染色体水平基因组组装。组装长 750.0 Mb,其中重叠群 N50 为 15.96 Mb,支架 N50 为 27.22 Mb。我们还测序并组装了一个 XY 雄性基因组,其大小为 727.2 Mb,重叠群 N50 为 13.69 Mb。通过与我们之前组装的 XX 个体进行比较,我们确定了一个候选 SD 基因。通过对雄性和雌性池进行重新测序,我们在 Chr24 上鉴定了一个 2.38 Mb 的性别决定区 (SDR)。读取覆盖度分析和 X 和 Y 染色体序列比较表明,SDR 中有一个 Y 特异性插入(约 500 kb),其中包含 amhr2 的雄性特异性重复(名为 amhr2y)。amhr2y 和 amhr2 在编码区具有相同的核苷酸同一性(81.0%),但在启动子和内含子区域具有相同的核苷酸同一性,但较低。在雄性性腺原基中的独家表达和诱导雄性到雌性性别逆转的功能丧失证实了 amhr2y 在雄性性别决定中的作用。我们的研究为鱼类中 amhr2 作为 SD 基因提供了一个新的实例,并揭示了不同鱼类谱系中性别决定进化背后的 AMH/AMHR2 通路成员重复的趋同进化。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
您可能会遇到以下副作用:• TKI 引起的血细胞计数低、异常出血和疼痛• TKI 引起的肌肉、骨骼和关节疼痛• TKI 引起的液体潴留• TKI 引起的心律改变、血管狭窄和血栓•皮肤瘙痒、头痛和疲劳•化疗引起的恶心、呕吐和食欲不振•白细胞减少引起的感染
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 10 月 14 日发布。;https://doi.org/10.1101/2021.10.13.462063 doi:bioRxiv 预印本
简介在兽亚纲哺乳动物中,除了一些例外,胚胎是否会发育为雄性或雌性取决于 Y 染色体的存在与否 (Capel, 2017)。雄性携带一个 X 染色体和一个 Y 染色体,而雌性携带两个 X 染色体。这是两性之间最根本的遗传差异,也是众多研究的主题。从历史上看,Y 染色体的生物学功能一直被误解。从 20 世纪 50 年代开始,它被认为是一片遗传荒地,因为对人类谱系的研究只发现了常染色体或 X 连锁遗传的特征 (Stern, 1957)。1959 年,研究表明男性决定基因是 Y 连锁的,但这被认为是一条功能惰性染色体上的例外 (Ford et al., 1959; Jacobs and Strong, 1959)。当转录单位首次在 Y 染色体上被发现时(Agulnik 等人,1994 年;Arnemann 等人,1991 年;Page 等人,1987 年;Reijo 等人,1995 年;Salido 等人,1992 年;Sinclair 等人,1990 年),人们认为它们是其前常染色体祖先的失活痕迹(Marshall Graves,1995 年)。最近,“濒死”理论假设 Y 蛋白编码基因不断丢失,预示着 Y 染色体最终会丢失(Aitken and Marshall Graves,2002 年;Marshall Graves,2004 年)。我们现在知道,将 Y 染色体视为正在消失的遗传沙漠的观点是错误的。数十年的研究证明,除了控制男性性腺的性别决定外,Y 染色体对于精子发生的初始化、维持和完成也至关重要。在这篇综述中,我们首先描述了 X-Y 染色体对的进化历史,然后将其作为范例来了解 Y 染色体如何在哺乳动物中变得功能特化。我们以人类和小鼠为重点,讨论了 Y 染色体不仅仅是性别转换的早期证据,以及随后发现与精子发生有关的 Y 基因的努力。然后,我们强调了实验限制如何影响该领域的进展,并提出了丰富我们对 Y 染色体功能理解的方法。
与常染色体不同,许多物种的性染色体对不会发生基因重组。有人提出,抑制重组是由自然选择造成的,这种自然选择倾向于将性别决定基因与这种染色体上的突变紧密联系在一起,这种突变对某一性别有利,而对另一性别不利(这被称为性拮抗突变)。目前尚未描述过这种选择导致抑制重组的例子,但孔雀鱼种群表现出性拮抗突变(影响雄性颜色),预计会进化出抑制重组。在孔雀鱼现存的近亲中,Y 染色体已抑制重组,并失去了 X 上的所有基因(这被称为基因退化)。然而,尽管孔雀鱼 Y 染色体携带性拮抗突变,但它偶尔会与 X 染色体重组。我们描述了孔雀鱼最近进化出一种新的 Y 染色体的证据,这种 Y 染色体来自与这些亲属相似的 X 染色体,取代了旧的、退化的 Y 染色体,并解释了为什么孔雀鱼配对仍然会重组。雄性着色因素可能在新的 Y 染色体进化之后出现,并且已经进化出仅限于雄性的表达方式,这是避免两性冲突的一种不同方式。