已知两个质量之间的牛顿相互作用的直接量化可以建立纠缠,如果检测到纠缠,将见证引力场的量子性质。引力相互作用也与依赖经典通道的引力退相干模型兼容,因此无法产生纠缠。在这里,我们在典型案例中表明,尽管没有纠缠,引力的经典通道模型仍然可以以两个质量之间的量子不和谐形式建立量子关联。这在 Kafri-Taylor-Milburn (KTM) 模型和最近提出的该模型的耗散扩展中得到了证明。在这两种情况下,从不相关状态开始,通常会产生大量不和谐。这最终在 KTM 模型中衰减,而在其耗散扩展中收敛到一个小的固定值。我们还发现,对质量状态的初始局部压缩可以显著增强产生的不和谐。
我们为量子计算 (BQP) 构建了一个经典可验证的简洁交互式论证,其通信复杂度和验证器运行时间在 BQP 计算的运行时间内是多对数的(在安全参数中是多项式的)。我们的协议是安全的,假设不可区分混淆 (iO) 和带错学习 (LWE) 的后量子安全性。这是普通模型中量子计算的第一个简洁论证;先前的工作(Chia-Chung-Yamakawa,TCC '20)需要长公共参考字符串和非黑盒使用以随机预言机建模的哈希函数。在技术层面,我们重新审视了构建经典可验证量子计算的框架(Mahadev,FOCS '18)。我们为 Mahadev 的协议提供了一个独立的模块化安全性证明,我们认为这是独立的兴趣。我们的证明很容易推广到验证者的第一条消息(包含许多公钥)被压缩的场景。接下来,我们将压缩公钥的概念形式化;我们将对象视为受约束/可编程 PRF 的泛化,并基于不可区分性混淆对其进行实例化。最后,我们使用(足够可组合的)简洁的 NP 知识论证将上述协议编译成完全简洁的论证。使用我们的框架,我们实现了几个额外的结果,包括
Qubits(量子位)的材料和体系结构,以及控制和捕获其量子状态,实施量子门并验证其操作原理的最佳方法。实施此类研究系统的首选量子控制设备是传统的,高性能的,T&M(测试和测量)实验室设备,该设备通过既定的通信接口和控制协议从经典计算机控制(图1.2)。在量子计算研究系统中,使用了几个AWG(任意波形生成器)来生成量子状态控制和读取信号,并结合了一些数字化器或实时DSOS或实时DSO(数字存储示波器)来捕获Qubits的状态。大多数AWG和数字化器无法应对控件和状态阅读信号的频率。通常由某种微波载体组成,该微波载体在幅度和相位中由一系列近高斯脉冲进行调制(图1.2,图1.3)。必须将AWG和DSO与某些混合器,IQ(相位正交)调制器,放大器和过滤器结合使用,而不是直接生成或捕获此类信号(图1.5)。混合器和智商调节器需要其他微波LO(本地振荡器)发电机(即CW微波发电机)。还需要其他控制信号,模拟和数字信号。因此,每量乘以的成本很高,而系统的可伸缩性仅限于几个量子位。下图描述了如何广泛使用T&M设备来控制和测量实验QC(量子计算)系统中的Qubits。鉴于性能和灵活性水平,传统的机架和堆栈仪器是最受欢迎的。在这些实验系统中,将多个多通道AWG与其他智商调节器结合使用,并将混合器应用于量子层,而矢量光谱分析仪或高带宽实时数字示波器用于读取码头的状态。由于现代仪器的强大触发和测序能力,可以执行刺激和响应的非常复杂和快速的序列。但是,鉴于控制系统和通信总线的速度限制,实际实用的量子计算所需的真正实时封闭环控制无法实现。
•Qi,Lo,Lim,Siopsis,Chitambar,Pooser,Evans,Grice(2015)•Chakraborty,Leverrier(2015)•Lim,Xu,Siopsis,Christbar,Christbar,Evans,Evans,Qi(2016)•Spelman(2016)•Spelman(2016)• LXSCEQ(2016)和Allestorfer,Buhrman,Speelman,Lunel(2021): div>
本文以教学方式介绍了量子计算的介绍,其中分析了一些量子形式主义以最终解决Grover的算法。众所周知,该算法是量子计算中的关键算法之一,它是其成功爆炸的能力,即成功的叠加原理之一。此外,该算法可用于在混乱的数据库中有效地定位特定元素,并在有效地找到适当的解决方案时解决某些问题,但同时,可以很容易地尝试使用可能的候选者。最后,对该算法进行了模拟,并将结果与其他经典算法进行比较,以说明量子计算的显着潜在优势。关键字:定量计算,Grovers算法,仿真
14 如果值得做,就值得过度做:阈值定理 227 14.1 对抗性错误. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..................................................................................................................................................................................................................................242 14.7 连接与阈值定理 ..................................................................................................................................................................................................................245
14 如果值得做,就值得过度做:阈值定理 227 14.1 对抗性错误. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..................................................................................................................................................................................................................................242 14.7 连接与阈值定理 ..................................................................................................................................................................................................................245