从I级丝状噬菌体FD的DNA中切除带有主要外套蛋白基因(基因VIII)的限制片段,该片段感染了大肠杆菌。将此片段克隆到表达质粒PKK223-3中,在该质粒PKK223-3下,它属于TAC启动子的控制,产生质粒PKF8P。噬菌体FD基因VIII类似地克隆到质粒pembl9 +中,使其能够受到位置定向的诱变。通过这种方式,位于48位的带正电荷的赖氨酸残基是该蛋白质C末端附近的四个带电的残基之一,变成了带负电荷的谷氨酸残基。将突变的FD基因VIII从Pembl质粒克隆回表达质粒PKK223-3,从而产生质粒PKE48。在诱导剂的存在下,在大肠杆菌TG 1细胞中强烈表达野生型和突变的外套蛋白基因,分别用质粒PKF8P和PKE48转化,以及产物procoat Procoat Procoat Proceat Procein procoat Procein procoat Procein procoat Procein procein procein procein roceins roceation costance and Insertion to coli coli coli coli nistrane noteMbrane insbrane insbrane nistrane。在C末端区域的侧链上仅2个净正电荷在病毒组装过程的初始阶段显然足够。然而,当对大肠杆菌的非抑制剂菌株进行测试时,突变的外套蛋白无法封装噬菌体R252的DNA,该噬菌体R252是一种含有琥珀色突变的FD噬菌体。另一方面,可以产生细长的杂化噬菌体颗粒,其衣壳中包含野生型(K48)和突变体(E48)亚基的混合物。这表明组装中的缺陷可能发生在病毒组装中的启动而不是伸长步骤处。还发现,在外套蛋白的C末端区域中除去或反转了在该位置的正电荷的其他突变也导致相应更长的噬菌体颗粒的产生。总的来说,这些结果表明Capsid中DNA和外套蛋白之间的直接静电相互作用,并支持DNA和外套蛋白亚基之间的非特异性结合模型,并具有在组装过程中可以变化的stoicheiiemementry。
TAQ DNA聚合酶是一种重组94 kDa DNA聚合酶,该聚合酶在带有克隆的Thermu Aquaticus DNA聚合酶基因的大肠杆菌菌株中表达。它具有5'-3'聚合酶和外切核酸酶活性,并且没有可检测到的3'-5'外切核酸酶活性。TAQ DNA聚合酶的延伸速率为1-2 kb/ min。此外,它具有3'腺苷酸化活性。因此,PCR产品可直接用于TA-CLONing程序。
摘要 桉树属有 900 多个品种和杂交种,其中许多是珍贵的速生硬木。由于其经济重要性,桉树是较早被破译基因组的树种之一。然而,缺乏有效的遗传转化系统严重制约了该植物的功能基因组学研究。桉树再生和转化的成功在很大程度上取决于基因型和外植体。在本研究中,我们系统地筛选了 12 个桉树品种的 26 个基因型,试图获得具有高再生潜力的桉树基因型。我们开发了两种常见的再生培养基,可用于大多数受试桉树基因型的播种下胚轴和克隆的节间作为外植体。然后,我们使用 DsRed2 作为遗传转化效率测试的视觉标记。我们的结果表明,E. camaldulen 和 E. robusta 适合进行遗传转化。最后,我们分别使用播种下胚轴和克隆节间成功地建立了稳定的农杆菌介导的桉树和桉树的遗传转化程序。总之,我们的研究为桉树的无性繁殖、基因转化、基于 CRISPR 的基因诱变、激活和抑制以及基因的功能表征提供了有价值的手段。
step1: - 包含要克隆的基因的DNA片段被插入称为载体的圆形DNA分子中,以产生嵌合体或重组DNA(rDNA)分子。步骤2载体充当将基因转运到宿主细胞的载体,尽管可以使用其他类型的活细胞,但通常是细菌。此过程称为转换。步骤3在宿主细胞中,矢量乘以产生许多相同副本本身,而且产生其携带的基因的副本。
✉函数和材料请求应发给迈克尔·C·巴西克(Michael C. Bassik)。bassik@stanford.edu。作者贡献R.A.K.和M.C.B.构思并设计了这项研究。R.A.K. 为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。 R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。和K.S.和B.M.在KARPAS-299细胞中进行了CRISPR屏幕。Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。Y.N.在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。a.m.m.和A.A.B.通过I.L.W.的建议进行了合成小鼠实验。和F.V.-C。 D.F.生成了APMAP同源模型。J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。J.A.S.在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。L.J.-A.分析了单细胞RNA-sequering数据。R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和M.G.进行了incucyte分析以验证CRISPR淘汰赛。R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K,M.G。和S.L.克隆的sgrna载体和产生的基因敲除细胞系。R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.进行了蛋白质印迹,共聚焦显微镜和药物滴定。M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。M.G.,S.L。和R.A.K.进行了流式细胞仪分析。R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和S.L.执行了RNA-sequest,D.Y.和K.L.分析了RNA测序数据。D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。D.Y.帮助设计了寡核苷酸子图和K.S.克隆了子图。R.A.K. 和M.C.B. 写了手稿。 所有作者都讨论了结果和手稿。R.A.K.和M.C.B.写了手稿。所有作者都讨论了结果和手稿。
在大肠杆菌中表达重组人BDNF蛋白的过程需要由人类BDNF蛋白的129-247AA整合的重组DNA基因形成,该基因形成的是人类BDNF蛋白和N末端6xhis-Sumo-Sumo标记序列的表达载体,该表达载体是必不可少的DNA基因,该基因构成了dna基因,该基因构成了incorm incorm incorm inscrim inscorm inscorm inscrip以及用于克隆表达载体的转录和翻译的组件。分离和纯化后,获得了N端6xhis-Sumo标记的重组BDNF蛋白。该重组BDNF蛋白的特征是高纯度(> 90%,SDS-PAGE)。该BDNF蛋白沿凝胶延伸至大约30 kDa分子量的带。
在大肠杆菌中表达重组人BDNF蛋白的过程需要由人类BDNF蛋白的129-247AA整合的重组DNA基因形成,该基因形成的是人类BDNF蛋白和N末端6xhis-Sumo-Sumo标记序列的表达载体,该表达载体是必不可少的DNA基因,该基因构成了dna基因,该基因构成了incorm incorm incorm inscrim inscorm inscorm inscrip以及用于克隆表达载体的转录和翻译的组件。分离和纯化后,获得了N端6xhis-Sumo标记的重组BDNF蛋白。该重组BDNF蛋白的特征是高纯度(> 90%,SDS-PAGE)。该BDNF蛋白沿凝胶延伸至大约30 kDa分子量的带。
Introduction 7 FortiClient, FortiClient EMS, and FortiGate 7 Fortinet product support for FortiClient 7 FortiClient EMS 8 FortiManager 8 FortiGate 8 FortiAnalyzer 9 FortiSandbox 9 FortiClient standalone and licensed version feature comparison 9 Endpoint communication security 11 Recommended upgrade path 12 Getting started 17 Getting started with FortiClient 17 EMS and endpoint profiles 18 Telemetry connection options 18 EMS and automatic upgrade of FortiClient 21 Provisioning preparation 22 Installation requirements 22 Licensing 23 Required services and ports 23 Firmware images and tools 27 Microsoft Windows 27 macOS 28 Linux 28 Obtaining FortiClient installation files 29 Provisioning 30 Manually installing FortiClient on computers 30 Microsoft Windows 30 Microsoft Server 31 macOS 31 Linux 37 Installing FortiClient on infected systems 38 Installing FortiClient as part of cloned disk images 39使用CLI 39安装forticlient 39 forticlient部署40 ForticLient EMS 40使用Microsoft Ad Servers部署forticlient 40卸载ForticLient 41升级ForticLient 42验证FortiClient 42 EMS和ForticLient 44 Ports和Forticlient 44 Connectitive ems和Forticlient 44 Connectitive ems and Service and ems和Forticientive ems and Service and ems and forticiC 44
Introduction 7 FortiClient, FortiClient EMS, and FortiGate 7 Fortinet product support for FortiClient 7 FortiClient EMS 8 FortiManager 8 FortiGate 8 FortiAnalyzer 9 FortiSandbox 9 FortiClient standalone and licensed version feature comparison 9 Endpoint communication security 11 Recommended upgrade path 12 Getting started 17 Getting started with FortiClient 17 EMS and endpoint profiles 18 Telemetry connection options 18 EMS and automatic upgrade of FortiClient 21 Provisioning preparation 22 Installation requirements 22 Licensing 23 Required services and ports 23 Firmware images and tools 27 Microsoft Windows 27 macOS 28 Linux 28 Obtaining FortiClient installation files 29 Provisioning 30 Manually installing FortiClient on computers 30 Microsoft Windows 30 Microsoft Server 31 macOS 31 Linux 37 Installing FortiClient on infected systems 38 Installing FortiClient as part of cloned disk images 39使用CLI 39安装forticlient 39 forticlient部署40 ForticLient EMS 40使用Microsoft Ad Servers部署forticlient 40卸载ForticLient 41升级ForticLient 42验证FortiClient 42 EMS和ForticLient 44 Ports和Forticlient 44 Connectitive ems和Forticlient 44 Connectitive ems and Service and ems and Service and ems和FortiC 44
《自然》杂志的一项研究报告了酵母酿酒酵母作为组装和维护各种 RNA 病毒基因组(包括 SARS-CoV-2)的平台的适用性,该平台可实现对 SARS-CoV-2 的基因操作和功能表征。在疫情爆发期间,病毒分离株可用于开发诊断、体内模型、抗病毒疗法和疫苗。如果病毒分离株的可用性有限,可以从化学合成的 DNA 中克隆病毒基因组,但使用大肠杆菌的既定方法通常不足以容纳冠状病毒(冠状病毒科)等 RNA 病毒的大型基因组。Thao 等人将转化相关重组 (TAR) 克隆应用于含有 GFP 基因的小鼠肝炎病毒 (MHV),该病毒具有成熟的反向遗传学平台。将覆盖 MHV-GFP 基因组和 TAR 载体的重叠 DNA 片段转化到酵母中,DNA 片段通过同源重组组装,产生包含全长病毒 cDNA 的酵母人工染色体 (YAC)。值得注意的是,90% 以上的筛选克隆显示 YAC 组装正确,表明组装效率高。通过分离和线性化 YAC 进行体外转录以生成病毒 RNA,成功从两个单个克隆中回收了传染性病毒,然后将其与编码 MHV 核衣壳蛋白的 mRNA 一起转染到 BHK-MHV-N 仓鼠细胞系中,以产生和扩增病毒。回收的病毒表现出与亲本 MHV-GFP 相同的复制动力学。该团队着手确定合成基因组学平台是否可以应用于 MERS-CoV,使用低拷贝细菌人工染色体 (BAC) 从八个重叠的 PCR 扩增 DNA 片段克隆病毒。该方法还应用于突变的 MERS-CoV 克隆,该克隆中插入了 GFP 基因。YAC 克隆组装和从克隆 DNA 中拯救病毒均取得成功,确定了该平台可适用于更广泛的病毒,包括转基因病毒基因组。进一步的实验确定病毒基因组可以稳定维持,并且该平台适用于其他难以克隆的病毒,例如寨卡病毒(黄病毒科)和人类呼吸道合胞病毒(副粘病毒科),包括直接从临床样本中克隆,而无需事先了解病毒基因型。令人惊讶的是,在收到基于 2020 年 1 月发布的基因组序列的 SARS-CoV-2 合成 DNA 片段后 1 周内,就实现了重组 SARS-CoV-2 和 SARS-CoV-2-GFP 的克隆和拯救。总之,这项研究展示了合成基因组学平台在疫情期间从不同起始材料(包括病毒分离物、克隆 DNA、合成 DNA 或临床样本)快速生成和功能表征进化 RNA 病毒的实用性。