简介 在目前情况下,人们正在努力实现更可控的药物在体内分布,同时减少副作用。无法达到所需治疗水平的药物被纳入从微米到纳米范围的不同载体系统中。蛋白质衍生的纳米颗粒是可生物降解、无抗原性、可代谢的。由于蛋白质的明确一级结构,它们可以促进药物的共价附着。最近,白蛋白、豆球蛋白和明胶被广泛用于这些制剂中。由于其可生物降解和无毒的特性,它已成为最突出的大分子载体,1 它们被广泛用于制备纳米球和纳米胶囊。它是一种主要的蛋白质,具有易于制备所需尺寸和存在反应性基团(硫醇、氨基或羧基)配体结合以进行共价连接的优点。在这里,白蛋白充当延缓剂,即有助于实现延长释放。上述优点为作者使用白蛋白制备甲硝唑 (MZ) 纳米颗粒提供了基础。 MZ 是一种结肠靶向药物,对溶组织内阿米巴和蓝氏贾第鞭毛虫有效。2,3
摘要:尽管吸收性差,但在过去的几十年中,通过口服途径递送的生物活性化合物结肠已成为药物研究的重点。尤其是,由于需要改善药理治疗,炎症性肠道疾病的高流行率引起了人们的兴趣,这可能会提供局部较高的药物浓度和较低的全身性暴露。结肠释放,以交付具有肠道稳定性和渗透率问题的口服生物制剂。对于结肠输送,已经提出了各种技术,其中时间依赖性系统依赖于相对恒定的小肠运输时间。利用此生理特征的药物输送平台提供了编程的滞后时间,以覆盖整个小肠运输并控制释放的发作。功能性聚合物涂层或胶囊塞主要用于此目的,它通过不同的机制(例如肿胀,溶解/腐蚀,破裂和/或增加渗透性)来工作,所有机制都被水溶液所激活。此外,通常需要肠道涂料来保护其在胃部逗留期间的时间控制配方,并排除可变胃排空的影响。在这篇综述中,提出和讨论了基于时间依赖性策略的口服结肠交付的基本原理和主要输送技术。
线粒体功能障碍和糖酵解激活被广泛认为是癌症的标志 (5)。线粒体融合蛋白 2 (MFN2) 编码位于线粒体外膜上的 GTPase 蛋白,也称为增生抑制基因。它最初是在自发性高血压大鼠的血管平滑肌细胞中发现的 (6)。先前的研究表明,MFN2 疾病与高血压、腓骨肌萎缩症、肥胖症、糖尿病、动脉粥样硬化和癌症等多种疾病有关 (7,8)。MFN2 在许多癌症中起着肿瘤抑制因子的作用,包括宫颈癌、肝细胞癌、胰腺癌、乳腺癌、胃癌和膀胱癌 (9-11)。然而,据我们所知,MFN2 与结肠癌之间的潜在关系尚未得到充分研究。
由于结肠靶向药物输送系统既能局部作用,又能全身作用,因此对该系统的需求日益增加。该系统对克罗恩病、溃疡性结肠炎、肠易激综合征等结肠疾病具有局部作用,对蛋白质、肽等具有全身作用。该系统还具有减少首过代谢和降低多种药物全身毒性的优势。该方法的主要目的是保护药物不进入上消化道,重要的是使药物以完整的形式到达结肠。有多种方法可以实现上述需求。本综述旨在了解通过 pH 敏感系统、微生物触发系统(即前体药物和多糖系统)、定时释放系统、渗透控制药物系统、压力依赖性释放系统靶向结肠的剂型的最新方法。
药物再利用,即探索现有药物的新用途,与开发新药物相比具有显著优势。再利用的药物已经经过安全测试,降低了失败的可能性。预先存在的数据和制造知识缩短了流程。开发成本更低,估计为 3 亿美元,而新药的成本为 20 至 30 亿美元。再利用的药物可以在 3 至 12 年内进入市场,而新药则需要 10 至 17 年。总体而言,药物再利用是一种有前途的方法,可以更快、更便宜地开发新疗法。结肠癌治疗面临障碍。传统药物开发速度慢且成本高。本综述强调药物再利用是一种战略解决方案。通过寻找现有药物的新用途,我们可以克服这些挑战。本综述探讨了结肠癌药物再利用的各种方法:网络模型:识别药物与疾病之间的联系。计算机辅助方法:利用软件预测药物-靶标相互作用。机器学习算法:分析大量数据集以发现隐藏的模式。分子对接技术:模拟药物如何与靶分子结合。本综述强调阿司匹林是结肠癌再利用的有希望的候选药物。其潜在益处是阿司匹林可能减缓癌细胞分裂。同时还强调了人工智能和网络建模在药物再利用中的作用。药物再利用为克服结肠癌治疗的挑战提供了一种有希望的策略。通过利用尖端的计算方法和个性化医疗,我们可以为患者开发更有效、更高效的治疗方案。
封装是一种很有前途的方法,可以保护益生菌在通过胃肠道时免受极端条件的影响,并将益生菌输送到结肠中的特定位置进行定植。近年来,人们使用各种剂型来封装益生菌,以在加工、储存和通过消化道期间保持细胞活力,从而提供健康益处。然而,由于益生菌在加工过程中对极端条件的敏感性,将益生菌封装作为结肠靶向递送系统的剂型的相关研究仍然局限于传统剂型。本综述重点介绍了常用益生菌结肠靶向递送系统中使用的各种剂型。在本综述中,我们讨论了益生菌封装中使用的当前剂型的局限性,以及益生菌产品结肠靶向递送系统的最新进展。本综述还涵盖了未来可能有效保持益生菌活力并在结肠中实现特异性释放的剂型的前景。
已鉴定出可用于人类炎症性肠病 (IBD) 患者以及大鼠和狗(它们经常用作临床前研究的动物)结肠靶向的多糖。多糖被结肠酶(由细菌分泌)降解,从而触发药物在靶位点的释放。必须指出的是,大鼠、狗和人类的微生物群存在很大差异。因此,在动物身上观察到的这种结肠靶向系统的性能可能无法预测患者的表现。本研究的目的是限制这种风险。将不同的多糖暴露于接种了 IBD 患者、健康狗和“IBD 大鼠”(其中诱发了结肠炎症)粪便样本的培养基中。培养基 pH 值的动态变化被用作细菌增殖的指标,因此,多糖作为其底物的潜力也被用作指标。在 pH 值变化程度及其物种依赖性方面观察到了根本差异。最有前景的多糖被用于制备聚合物薄膜包衣,该包衣包裹着载有 5-氨基水杨酸 (5-ASA) 的起始芯。为了限制多糖在上消化道中过早溶解/肿胀,薄膜包衣中还加入了乙基纤维素。在暴露于接种了 IBD 患者、健康狗和“IBD 大鼠”粪便样本的培养基时监测药物释放。为了进行比较,还测量了纯培养基中的 5- ASA 释放。大多数薄膜包衣表现出高度依赖于物种的药物释放动力学或有限的结肠靶向能力。有趣的是,芦荟和灵芝(一种蘑菇)提取物在所有物种中都表现出结肠靶向的良好潜力。
结直肠癌(CRC)是癌症死亡的第三主要原因,仅次于肺和前列腺(男性)或乳腺癌(女性)癌症。2020年,估计有104,610例新病例(男性52,340例,女性52,270例)和43,340例新病例(男性为25,960例(男性25,960例,女性17,380例),在美国将在美国诊断为53,200人,其中53,200人将死亡,这些人将死亡53,200人。美国癌症协会的研究表明,美国有55%的CRC可以归因于可改变的危险因素,例如吸烟,体重,运动,红色或加工肉类的消耗,低钙摄入量,大量酒精消耗以及水果,蔬菜和纤维的摄入量非常低。最近被诊断为CRC的患者的预后相对较好,有64%的患者(在所有阶段)存活了5年诊断。在1970年至2017年之间,死亡率降低了54%,这主要是由于风险因素变化,筛查增加和治疗方案的改善(1)。