摘要我们开发了一种允许人们在单细胞培养样品中测试大量药物组合的方法。我们依靠单个细胞中药物摄取的随机性作为创建和编码药物治疗方案的工具。用荧光条形码药物的组合处理一个包含数千个细胞的单个样品。我们在细胞培养样品中创建独立的瞬时药物梯度,以产生异质的局部药物组合。在孵育期后,记录每个细胞的随后的表型和相应的药物条形码。我们使用这些数据用于宏观细胞种群中对药物的治疗反应的统计预测。为了进一步应用这项技术,我们开发了一种不需要任何化学药物修饰的荧光条形码方法。我们还开发了无分段的图像分析,能够处理样品中包含数千个细胞的大型光场,即使在汇合生长条件下也是如此。在大多数生物实验室中,可以很容易地获得执行我们方法所需的技术,不需要机器人或微流体设备,并且会大大减少传统高通量研究的资源需求和产生的成本。
许多新兴应用中的主流介电储能技术,如可再生能源、电气化交通和先进推进系统,通常需要在恶劣的温度条件下运行。然而,在当前的聚合物介电材料和应用中,优异的电容性能和热稳定性往往是互相排斥的。在这里,我们报告了一种定制结构单元以设计高温聚合物电介质的策略。预测了由不同结构单元组合而成的聚酰亚胺衍生聚合物库,并合成了 12 种代表性聚合物用于直接实验研究。这项研究为实现在高温下具有高能量存储能力的坚固稳定的电介质所必需的决定性结构因素提供了重要的见解。我们还发现,当带隙超过临界点时,高温绝缘性能的边际效用会递减,这与这些聚合物中相邻共轭平面之间的二面角密切相关。通过实验测试优化和预测的结构,观察到在高达 250°C 的温度下能量存储增加。我们讨论了将该策略普遍应用于其他聚合物电介质以进一步提高性能的可能性。
摘要:药物基因组学是一个快速发展的领域,其目标是为每位患者提供个性化治疗 1。此前,我们开发了新药机会计算分析 2 (CANDO) 平台,用于多尺度治疗发现,通过分析化合物与大型蛋白质库的相互作用,筛选出针对任何 3 适应症/疾病的最佳化合物。我们在 4 CANDO 5 平台内实施了全面的精准医疗药物发现流程,以确定哪些药物最有可能对非小细胞肺癌 (NSCLC) 的突变表型有效,其依据的假设是具有相似相互作用 7 特征(或特征)的药物将具有相似的行为,因此表现出协同作用。CANDO 8 预测 EGFR 抑制剂奥希替尼最有可能与四种 KRAS 抑制剂产生协同作用。 9 细胞增殖试验验证研究证实,奥希替尼与 10 ARS-1620(一种 KRAS G12C 抑制剂)和 BAY-293(一种泛 KRAS 抑制剂)联合使用,通过作用于突变型 KRAS 表现出协同作用,11 降低细胞增殖。我们的精准医疗管道可用于 12 识别能够与 KRAS G12C 抑制剂产生协同作用的化合物,并通过了解它们在蛋白质组学/相互作用组学尺度上的行为来评估它们 13 成为药物的可能性。14
代谢重编程在癌症发展和患者生存中起关键作用。与其他B细胞恶性肿瘤相比,慢性淋巴细胞性白血病(CLL)的代谢不是高度活跃(1);然而,它发展出代谢修饰的基础,其进展和对药物的抵抗力(2-4)。这些修饰中的一些影响氧化磷酸化(OXPHOS),并帮助癌细胞使用葡萄糖底物的替代方法来产生三磷酸腺苷(ATP)(ATP)(5)。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。 已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。 oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。 由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。 然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。 OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。 随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。 谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。 谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。GLS-1反过来具有2种替代剪接变体:谷氨酰胺酶C(GAC)和肾脏谷氨酰胺酶(KGA)。谷氨酰胺酶C的催化活性高于肾脏谷氨酰胺酶,通常在白血病细胞中上调(10,11)。已经表明,急性髓细胞性白血病(AML)细胞系中GLS-1基因的敲低破坏了谷氨酰胺驱动的OXPHOS,导致细胞增殖减少和凋亡诱导(10)。这表明改变使用谷氨酰胺的药物可能对CLL治疗有用。CLL细胞高度依赖于B细胞受体途径,该途径为细胞发育和成熟提供了信号。B细胞受体刺激的终点是NF-K B和MAP激酶途径的激活,这导致CLL细胞的增殖,迁移和存活。布鲁顿酪氨酸激酶(BTK)在通过B细胞 - 受体信号级联的信号转导中起关键作用。因此,它成为共价BTK抑制剂(例如ibrutinib)的有效靶标(12)。CLL中最常见的细胞遗传突变是13Q缺失(DEL [13Q]),在约50%的CLL病例中发现(13,14)。在DEL [13Q] CLL细胞中,删除了microRNA(miR)簇miR-15a/miR-16-1,导致其肿瘤抑制功能的丧失以及抗凋亡蛋白B细胞淋巴瘤-2(BCL-2)和髓样细胞白血病1(MCL-1)的过表达。失调的BCl-2表达有助于白血病细胞的存活和积累,而MCL-1蛋白对CLL细胞产生保护作用,抑制了凋亡(15、16)。因此,Bcl-2抑制剂venetoclax
图 1:CRISPR 死亡筛选设置。在死亡细胞群中确定 sgRNA 丰度,从而可以识别在泛 PI3K 抑制剂 GDC-0941 存在下诱导细胞死亡的 sgRNA,并可以识别适合联合治疗的靶标。
本研究部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为 DE-AC36-08GO28308。资金由美国能源部能源效率办公室和可再生能源太阳能技术办公室提供。本文表达的观点不一定代表美国能源部或美国政府的观点。
Pharma Innovation Journal 2023; SP-12(10):1681-1687 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; SP-12(10):1681-1687©2023 TPI www.thepharmajournal.com收到:01-07-2023接受:05-08-08-2023 NIHAL KUMAR PANDEY M.TECH M.TECH M.TECH,农用机械和动力工程系机械和动力工程,SVCAET&RS,IGKV,RAIPUR,CHHATTISGARH,印度AK Shrivastava,AK Shrivastava农用机械和动力工程系助理教授,KDCCARS,IGKV,RAIPUR,RAIPUR,RAIPUR,CHHATTISGARH,CHHATTISGARH,CHHATTISGARH,印度Nishama M.Tech印度Chhattisgarh,通讯作者:Nihal Kumar Pandey M.Tech,农用机械和动力工程系,SVCAET&RS,IGKV,RAIPUR,RAIPUR,CHATTISGARH,印度,
摘要 世界尚未对 2019 年冠状病毒病 (COVID-19) 做好准备,并且仍未做好应对未来大流行的准备。虽然在开发 COVID-19 疫苗和治疗方法方面取得了前所未有的进展,但仍然需要针对新型冠状病毒和其他病毒病原体的高效且可广泛使用的门诊治疗方案。我们认为当务之急是开发泛家族药物鸡尾酒,以增强药效、限制毒性和避免耐药性。我们敦促针对所有可能在短期内(1-2 年)和长期内大流行的病毒开发鸡尾酒疗法,使用处于高级临床试验阶段的药物对或已获批用于其他适应症的改用药物。虽然在体外和临床上针对严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) 做出了重大努力,但许多研究使用了单一药物并得到了令人失望的结果。在这里,我们回顾了针对 SARS-CoV-2 和其他病毒的药物组合研究,并介绍了一种模型驱动的方法来评估最有可能产生临床疗效的药物对。如果成分药物缺乏足够的效力,我们主张采用协同组合来达到治疗水平。我们还讨论了阻碍 COVID-19 治疗进展的问题,包括在临床疾病后期测试疗效可能性较低的药物,以及缺乏对开发病毒学替代终点的关注。有必要加快有效的临床试验,测试可在下一次大流行期间尽早由最近感染者和接触者在家中服用的药物组合,无论是由冠状病毒还是其他病毒病原体引起。本文的方法代表了全球病毒性大流行防范的积极计划。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2022 年 1 月 17 日发布了此版本。;https://doi.org/10.1101/2020.12.22.423126 doi: bioRxiv preprint