嵌合抗原受体(CAR)-T细胞疗法具有巨大的癌症治疗潜力。为了了解CAR-T细胞疗法反应和CRS的时间动力学的基础机制,我们开发了一种新型的多层数学模型,该模型融合了抗原介导的CAR-T细胞扩张,抗原阴性耐药性,抗原阴性耐药性和巨噬细胞相关的细胞因子释放。考虑了巨噬细胞激活的三个关键机制:释放损伤相关的分子柱,抗原结合介导的激活和CD40-CD40L接触。该模型准确地描述了25种具有不同反应和IL-6细胞因子动力学的患者时间课程。我们成功地将响应的斗型形状与可解释的模型参数联系起来,并研究了CAR-T细胞剂量和初始肿瘤负担对CRS和治疗结果的影响。通过解散巨噬细胞激活的时间表,该模型确定了每个激活机制的不同贡献,这表明CD40-CD40L轴是CRS的主要驱动力和临床上可行的靶标,以控制激活过程并调节细胞因子峰高。我们的多层模型提供了一个综合框架,用于了解治疗过程中CAR-T细胞,肿瘤细胞和巨噬细胞之间的复杂相互作用。
“细胞因子风暴”这一术语最早于 1993 年由 Ferrara 等人使用,用于描述移植中的移植物抗宿主病。1 随后,细胞因子风暴被认为与严重病毒感染、自身免疫和血液病以及一些药物的不良反应有关。随着当前冠状病毒病-2019 (COVID-19) 大流行,不仅医学界而且普通公众对这一现象重新产生了兴趣。尽管已经发表了多篇关于细胞因子风暴及其与当前大流行的相关性的论文,但必须注意的是,对于什么是“细胞因子风暴”并没有明确的定义,尽管我们对这一现象的了解越来越多,但针对风暴进行免疫调节并不总能产生预期的结果。本文将概述“细胞因子风暴”并以简化的方式描述这一现象。
这项研究是在俄罗斯联合会的28个Arbor Acres Cross(CJSC“家禽农场Orenburgskaya”)上进行的。研究设计包括不同年龄(7、14、28和42天)的四组(n = 7)。在整个实验中使用了标准管理程序。通过乳头饮料提供水。随意提供水和饲料。肉鸡鸡。从0-10、11-20至21-35天提供了开胃饮食,种植者饮食和精加工饮食。饲料成分包括小麦,酒吧,玉米,大豆,大豆粉,葵花籽粉,葵花籽油,石灰石面粉,餐盐,肉粉,氨基酸,氨基酸,维生素和矿物质蛋白(表1)(表1)。
1生物医学中的数学建模跨学科中心,S.M。Nikol'skii数学研究所,俄罗斯人友谊大学(Rudn University),Miklukho-Maklaya St. 6号,117198,俄罗斯莫斯科,俄罗斯2 M&S裁决,5 Naryshkinskaya Alley,125167,俄罗斯125167,俄罗斯3号,俄罗斯3号,外国语言部3号。2, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 115093 Moscow, Russia 4 Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia 5 Bukhara Engineering Technological Institute, 15 Murtazoyeva Street, Bukhara 200100, Uzbekistan 6 Department of Mathematical Sciences, The University of Texas at El帕索(Paso),埃尔帕索(El Paso),德克萨斯州79902,美国7 Institut Camille Jordan,UMR 5208 CNRS,Lyon University Lyon 1,69622法国Villeurbanne,法国 *通信 *通信:cristina.leon@msdeciess.ru
摘要:胃肠病是糖尿病的常见并发症,与肠神经系统损害有关。全身低度炎症会促进神经毒性,并已报道与周围神经病变和自主神经病变有关。然而,人们对其与胃肠病的关联了解甚少。为了横断面探索该区域,我们纳入了糖尿病患者(1 型:56 例,2 型:100 例)和 21 名健康对照者。采用多路复用技术测量血清白细胞介素 (IL)-6、IL-8、IL-10、肿瘤坏死因子 (TNF)-α 和干扰素 (IFN)-γ 水平。通过无线运动胶囊检查评估节段性胃肠道转运时间。根据胃轻瘫主要症状指数问卷对胃轻瘫症状进行评分。与健康人相比,1 型糖尿病患者的 TNF- α 水平降低,2 型糖尿病患者的 TNF- α 水平升高,而结肠转运时间增加(所有 p < 0.05)。在糖尿病中,IL-8 与胃排空延长(优势比 (OR) 1.07,p = 0.027)以及 IL-10 与结肠转运延长(OR 29.99,p = 0.013)之间存在关联。发现 IL-6 与恶心/呕吐(rho = − 0.19,p = 0.026)和腹胀(rho = − 0.29;p < 0.001)之间存在负相关性。这些发现表明糖尿病中炎症和肠神经系统之间可能存在相互作用,这引发了一个问题:抗炎策略是否可以应用于糖尿病胃肠病的管理。
摘要 背景 T 细胞介导疗法,例如嵌合抗原受体 T 细胞和 T 细胞双特异性抗体 (TCB),可有效地将 T 细胞重定向至肿瘤细胞,促进细胞毒性突触的形成并导致随后的肿瘤细胞杀死,该过程伴随着细胞因子的释放。尽管 TCB 在临床上具有良好的疗效,但其治疗与细胞因子释放综合征 (CRS) 的风险有关。本研究的目的是确定能够减轻细胞因子释放同时保留 T 细胞介导的肿瘤杀伤的小分子。方法通过筛选 52 种美国食品和药物管理局批准的激酶抑制剂库,以确定它们对 CD3 刺激后 T 细胞增殖和细胞因子释放的影响,我们确定了 mTOR、JAK 和 Src 激酶抑制剂是调节药理活性剂量下 TCB 介导的细胞因子释放的潜在候选药物。利用人外周血单核细胞杀伤靶细胞的体外模型,我们评估了 mTOR、JAK 和 Src 激酶抑制剂与 2+1 T 细胞双特异性抗体 (TCB) 包括 CEA-TCB 和 CD19-TCB 联合使用对 T 细胞活化、增殖和靶细胞杀伤的影响,通过流式细胞术测量,通过 Luminex 测量细胞因子释放。在无肿瘤干细胞人源化 NSG 小鼠中体内评估了 mTOR、JAK 和 Src 激酶抑制剂与 CD19-TCB 的组合在 B 细胞耗竭方面的效果,并在人源化 NSG 小鼠的淋巴瘤患者来源的异种移植 (PDX) 模型中评估了其抗肿瘤功效。结果 Src 抑制剂的作用与 mTOR 和 JAK 抑制剂不同,其体外抑制 CD19- TCB 诱导的肿瘤细胞裂解,而 mTOR 和 JAK 抑制剂主要影响 TCB 介导的细胞因子释放。重要的是,我们在体内证实了 Src、JAK 和 mTOR 抑制剂可显著降低 CD19-TCB 诱导的细胞因子释放。在人源化 NSG 小鼠中,使用 Src 抑制剂持续治疗可防止 CD19-TCB 介导的 B 细胞耗竭,而使用 mTOR 和 JAK 抑制剂则可保留 CD19-TCB 功效。最终,在淋巴瘤 PDX 模型中,使用 Src、mTOR 和 JAK 抑制剂进行短暂治疗可最大程度地抑制抗肿瘤功效。
肌肉骨骼损伤的马匹,此外,还有更多针对性的治疗方法,通常是施用的全身性抗炎药,例如NSAIDS来管理疼痛和炎症。在人类中,由于NSAID对血小板的成分(例如血小板)的可产生影响,因此在同时或在获得和加工PRP和AP的血液之前或在获得和加工血液之前提出了CON -CERNS,然后可能会影响细胞和生长因子概况。鉴于环氧酶-1(COX-1)对血栓烷和血小板聚集的已知影响,特别关注非选择性NSAID的施用。9实际上已证明萘普生,阿司匹林和对乙酰氨基酚等NSAID可以改变人类PRP的细胞因子和生长因子谱。10 –12这项研究导致医生通常建议在获得人类PRP加工的血液之前3至7天停止NSAIDS。直到最近,还没有关于在血液加工对马的血液加工之前在马匹之前停止NSAID在马匹和AP中停止的指南。先前的研究表明,尽管在本研究中未直接评估NSAID对细胞因子和生长因子剖面的影响,但PRP亚第分析中的白细胞和血小板对马匹NSAID酮酮对马的施用有所改变。13然而,在体外,血液与NSAID(例如苯基丁二字 - 区域,firocoxib,酮洛芬和氟尼蛋白巨蛋白)的孵育不会影响白介素-1受体拮抗剂拮抗剂蛋白(IL-1RA)或IL-1β的浓度。14此外,最近已经显示,苯基布tazone,firocoxib,酮洛芬和氟尼蛋白在体内不会显着改变PRP或AP的细胞因子和生长因子谱,而这些NSAIDS单次给药后6小时获得了血液或AP的生长因子谱。15然而,这项研究没有评估NSAID延长给药对这些产品的细胞因子和生长因子谱的影响,这是一个重要的主题,鉴于长期施用了NSAID(尤其是那些口服的人)在马匹中是一种非常普遍的实践。因此,这项研究的目的是评估临床相关剂量对PRP和AP制剂的细胞因子和生长因子促进的临床相关剂量,以延长常见的口服NSAID施用的影响。我们假设,当暂停施用后的第二天获得血液时,延长(6天)给予这些NSAID不会显着改变PRP和AP的临床相关细胞因子的浓度和生长的浓度。
在 2019 年冠状病毒病大流行期间获得的见解强调了先天性和适应性免疫反应在确定疾病严重程度方面发挥的关键作用。这一新发现具有巨大的潜力,有望在自身免疫性疾病的诊断、治疗和管理方面带来范式转变。该领域新兴的先进技术有望在这一转变中发挥关键作用。这些包括利用多组学分析对疾病状态进行分层、通过整合数字技术应用精准医疗以及实施远程医疗以弥合医疗保健领域现有的区域差异。本描述性综述的目的是详细概述对细胞因子风暴疾病的重新分类,探索机器学习方法在自身免疫性疾病中的应用,并强调将远程医疗和创新预防策略纳入类风湿性关节炎管理的重要性。通过本综述,我们旨在介绍最新的研究成果和专家见解,并讨论这些研究领域的未来前景和方向。关键词:细胞因子风暴疾病、机器学习、远程医疗、原始预防
患有严重急性营养不良的儿童(SAM)具有高感染死亡率和发病率,这意味着其免疫防御能力。我们假设从赞比亚和津巴布韦住院的儿童(0到59个月)循环固有的免疫细胞(n = 141)具有不同的能力,可以对细菌反应相对于足够营养的健康对照(n = 92)。SAM住院患者具有更高的中性粒细胞和单核细胞结合能力,但单核细胞激活和促炎性介质分泌较低,响应于脂多糖或鼠伤寒沙门氏菌的响应。在SAM病例中,浪费严重程度与细胞因子分泌负相关,HIV儿童的单核细胞激活较低,而最小的儿童在刺激后释放了最少的骨髓氧化酶。住院细菌结合能力和单核细胞激活与出院时持续性SAM的几率相关,这是下一次死亡率的危险因素。因此,SAM会改变先天的免疫细胞功能,有利于细菌遏制而不是促进性激活,这可能会导致出院后的健康缺陷。
Chen-Yu Tsai,1 Myo OO,1 Jih Hou Peh,2 Benjamin C.M.Yeo,3 Ariel Aptekmann,1 Bernett Lee,4,5,6 Joe J.J. Liu, 2 Wen-Shan Tsao, 1 Thomas Dick, 1,7 Katja Fink, 4 and Martin Gengenbacher 1,7,8, * 1 Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA 2 Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore 3 Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore 4 Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore 5 Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 6 A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos,新加坡138648,新加坡7 Hackensack Meridian医学院,Nutley,NJ 07110,美国8铅联系 *通信 *通信:martin.gengenbacher@gmail@gmail.comYeo,3 Ariel Aptekmann,1 Bernett Lee,4,5,6 Joe J.J. Liu, 2 Wen-Shan Tsao, 1 Thomas Dick, 1,7 Katja Fink, 4 and Martin Gengenbacher 1,7,8, * 1 Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA 2 Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore 3 Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore 4 Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore 5 Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 6 A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos,新加坡138648,新加坡7 Hackensack Meridian医学院,Nutley,NJ 07110,美国8铅联系 *通信 *通信:martin.gengenbacher@gmail@gmail.com