抽象的月亮 - 阿波罗计划期间通过轨道和表面实验观察到血浆相互作用。光子和带电的颗粒为月球表面充电,并形成薄的debye-比例等离子鞘,在日光下和阴影半球上方。此外,电子的平均热速度,导致Debye鞘在航天器周围形成。光电子和等离子体鞘直接在表面上吸收的灰尘谷物,这些粉尘呈凸起,随后充电的尘埃流动呈负电荷,并与降落的航天器的正面表面接触。作为电荷载体,灰尘颗粒被吸引或排斥在带电的航天器上。环境等离子体和高次级排放的低密度也有助于横杆上的表面充电速率高。电荷在航天器和航天器组件上的积累是由航天器与空间等离子体,能量粒子流和太阳光子相互作用而产生的,该太阳光子通常由游离电子和光子驱动。据报道,归因于航天器充电的各种效果是导致许多操作异常的原因,包括操作异常组件故障,伪造命令,物理航天器表面损伤以及航天器表面材料热和电特性的降解。等离子体的研究 - 表面相互作用显示出有希望的结果,用于开发新型的粉尘缓解航天器充电安全管理的策略。关键字:等离子表面相互作用,等离子鞘,(航天器)表面充电本文旨在调查减轻月球尘埃作为等离子表面相互作用的载体的策略,从而导致航天器充电。
它达到稳定性。在514.5 nm激光率下进行石墨烯的光学和热力学性能。结果表明石墨烯具有出色的光疗特性。在低能和中能区域中石墨烯的吸收相当显着,并且其在紫外线区域中的强吸收可以应用于紫外线过滤器和光伏设备。在高温下,石墨烯的高温度及其稳定性在热管理材料和高温应用中具有巨大的应用潜力,扩大了石墨烯在光学组件和治疗管理材料中的应用,并为实验提供了更多理论支持。
图4。(𝑇)7 nm厚的ND 0.825 SR 0.175 NIO 2膜中的四个数据存放在SRTIO 3单晶体和全局数据拟合等式上。2(Fowlie等人[36]在其图S1中报告的原始数据,A [75])at𝑝= 5.0(𝑓𝑖𝑥𝑒𝑑)。绿球表示拟合𝜌(𝑇)数据的边界。青色表明𝑇𝑇,𝑧𝑒𝑟𝑜。推导的Debye温度为:𝑇= 313±1𝐾。适用于所有拟合𝜌→∞(等式2)。拟合的好处:(a)0.9992; (b)0.9995; (c)0.9981; (d)0.9997。95%置信带(粉红色阴影区域)的厚度比拟合线的宽度窄。
摘要:在目前的工作中,采用共沉淀方法合成BAFE2O4纳米颗粒。通过机械混合和成型方法进行的BAFE2O4/MWCNT/EPOXY纳米复合材料的制造。制备的纳米复合材料的特征是X射线衍射,UV-VIS光谱和阻抗光谱。使用Debye Scherrer公式,发现BAFE2O4的粒径约为9.457 nm。在室温下进行纳米复合材料的阻抗光谱测量,并观察到介电常数的值随频率的增加而降低,并且介电损耗随频率的增加而增加。ecb-5(BAFE2O4的40 wt%)复合材料的介电常数的最大值,其中MWCNT的WT%保持在2。发现ECB-5复合材料的介电损耗在较低的频率下为〜0.05,并且该值随频率的增加而增加。
摘要。基于密度功能理论(DFT)的第一原理计算已用于研究α-GAN晶体的结构,电子,光学和热力学方面。基于局部密度近似(LDA),广义梯度近似(GGA)和荟萃分析梯度近似(M-GGA)功能方法,已经估计α-GAN晶体的带隙能量为1.962 eV,2.069 ev和2.354 ev。这些研究中介绍的带隙能量与其他实验和理论研究的能量一致。此外,我们的发现使我们了解了α-GAN晶体的电子和光学特性。α-GAN晶体中的带隙能是定义其电气和光学特征的关键因素。它们是可以将电子从价带向传导带退出的能量范围,从而影响材料的电导率以及材料吸收并发出光的能力。我们在先前的研究中的结果大致表明了我们发现的可靠性,因此增加了我们对α-GAN的电子和光学现象的了解。通过模拟状态密度和α-GAN的状态部分密度,发现了GA和N原子的轨道特性。除了分析带结构,状态的密度和我们还包括化合物的光学特性外。结果表明α-GAN具有直接的带隙,该带隙位于布里群区的G点。这是其开发光电设备的巨大潜力的原因。此外,我们使用前面给出的三个近似值来找到该化合物的光学特性(吸收系数)。除此之外,可以像Debye温度,焓,自由能,熵和热容量一样计算的热力学特性使我们能够更好地了解化合物的热行为。检测到α -GAN的热容量为17.3 Jmole -1 K -1,Debye温度为824.6K。这项研究将对α-G-N提供详细的解释,涵盖其所有基本特性以及光电和电子设备中可能的应用。这项研究的结果非常重要,基于α-GAN研究将开发的新技术将非常有益。
tions(UPPE)求解器[38]。这些结果与等离子体柱的整体尺寸相符,但也表明整个等离子体具有丰富的细尺度结构(正如我们在多丝状区域所预期的那样[39-41])。在本文中,我们进行了简化,没有包括细尺度等离子体扰动。由于强度钳制,等离子体柱近似为具有恒定密度的中心核,然后沿径向下降 100μm,在外半径 r pl 处密度为零。速度分布由我们的 PIC 代码确定:给定 E(⃗x,t),空气以 W 速率电离[35],新电子在脉冲的剩余部分中加速[28](执行这些计算的代码包含在[31]中)。一般而言,速度分布受 γ = 1 附近强场电离细节(例如 [ 42 ])和成丝过程中激光脉冲变形的影响。在本文中,我们进一步简化并假设电子以零初始速度电离,然后由高斯脉冲的剩余部分加速(具有 ˆ x 极化并在 + z 方向上传播)。整体而言,初始 N e 是高度非麦克斯韦的,在 100 Torr 时具有峰值动能 K tail ≃ 5 eV,平均动能 K avg ≃ 0. 6 eV,而在 1 Torr 时这些值增加到 K tail ≃ 16 eV 和 K avg ≃ 2 eV。对于 3.9 µ m 激光器,动能大约大 25 倍,因为激光强度相当且能量按 λ 2 缩放。接下来我们考虑等离子体柱的演变。给定 N e ,我们构造等离子体的横向薄片,在纵向 ˆ z 使用周期性边界条件(由于电子速度只是 c 的一小部分,因此这对领先阶有效),并使用我们的 PIC 代码模拟径向演变。德拜长度相当小:λ Debye ≃ 10 nm,因此我们使用能量守恒方法 [43] 来计算洛伦兹力。电子-中性弹性碰撞频率 ν eN 取决于 O 2 和 N 2 的截面,对于我们的能量来说大约为 10 ˚ A 2 [44]。反过来,电子-离子动量转移碰撞频率由 ν ei = 7 给出。 7 × 10 − 12 ne ln(Λ C ) /K 3 / 2 eV ,其中 Λ C = 6 πn e λ 3 Debye [45]。然后将得到的径向电流密度 J r 和电子密度 ne 记录为半径和时间的函数(更多详细信息可参见 [31] 的第 3 部分)。这些结果可以很好地分辨,网格分辨率为 ∆ x = ∆ y = 2 µ m,等离子体外缘的大粒子权重为 ∼ 10。图 1 中给出了 100、10 和 1 Torr 下 PW 模拟中λ = 800 nm 的电子数密度。t = 0 时等离子体外缘具有简化的阶跃函数轮廓,在半径 r pl = 0 处 ne = 10 20 m − 3。 5 毫米。因此,除了从等离子体边缘发射出脉冲波外,在内部激发出约 90 GHz 的相干径向等离子体频率振荡 [ 46 ],在表面激发出约 63 GHz 的 SPP [ 33 , 34 , 47 ]。扩展到中性大气中的 PW(r > r pl)对密度不敏感
在本研究中,通过高能球磨和热处理制备无铅BATI BATI 1-X ZR X O 3(对于X = 0、0.05和0.15)陶瓷。所执行的X射线,SEM和EDS测量结果证实了所获得的样品的高纯度,高质量和预期的定量组成。介电性能的研究是通过宽带二射流光谱在0.1 Hz至10 MHz的频率下进行的。根据Arrhenius形式主义分析所获得的测量数据证明了存在弛豫型介电机制。研究的陶瓷材料的阻抗答案表明存在两个弛豫过程:一个具有显性电阻分量,另一个具有较小的电容分量。观察到的介电弛豫过程取决于温度,并且具有“非debye”特征。关键字:Batio 3,机械化学合成,X射线方法,介电特性
设计及其应用,2,4 其中仅需最少的时间和资源即可快速评估 k 是关键。有很多可用的方法来评估 k 。基于第一性原理的非谐晶格动力学 (ALD) 是过去几年中广泛采用的方法。5 然而,使用大型超胞进行的太多力计算虽然可以部分重建,但非常耗时耗资源,6 这限制了其在高通量计算预测 k 中的实际应用。或者,使用经验模型评估 k 是一种更有效、更可行(计算成本更低)的方法,例如 Debye-Callaway 模型、7-9 Slack 模型、10 等。特别是,Slack 模型已广泛应用于评估许多材料的 k,11-13 显示出快速预测 k 和洞察热传输的潜在能力。14-16
1. Ganguly, A. 、Roychowdhury, S. 和 Gupta, A. (2024)。粒子外部驱动和自泳推进的统一流动性表达式。流体力学杂志,994,A2。[链接] 2. Ganguly, A. 、Alessio, BM 和 Gupta, A. (2023),扩散泳动:一种新颖的传输机制 - 基础、应用和未来机遇。Front. Sens. 4:1322906。[链接] 3. Ganguly, A. 和 Gupta, A. (2023)。绕圈:自推进弯曲杆的细长体分析。 Physical Review Fluids,8(1),014103。[链接] 4. Ganguly, A. ∗ 、Bairagya, P. ∗ 、Banerjee, T. 和 Kundu, D. (2022)。自然启发算法与广义 Pitzer‐Debye‐Hückel (PDH) 细化在环状二醚体系液-液平衡 (LLE) 相关性中的应用。AIChE 杂志,68(2),e17434。[链接]
使用ARC熔化方法合成多晶Zr 5 Al 4。粉末X射线衍射证实了具有晶格参数的Ti 5 Ga 4型(P6 3 /MCM)的先前报道的晶体结构:A = 8.4312(6)Å,C = 5.7752(8)Å。电阻率和低温磁化率研究表明,Zr 5 Al 4在2 K以下表现出超导行为。归一化的热容量在t c = 1.82 K,ΔC/γtc = 1.41时,证实了散装超导性。Sommerfeld系数γ= 29.4 MJ mol -1 K -2和Debye温度d = 347 K,通过拟合低温热容量数据获得。电子偶联强度λEL-PH = 0.48,并且估计的上部临界场μ0H C2(0)= 1.09 t(脏极限)表明Zr 5 Al 4是弱耦合的II型超导体。第一原理计算显示费米能量附近的Van Hove奇异性存在。