图 8 LHY1 和 bHLH28 在 SNC1 表达调控中的作用。(a)来自 DAP-seq 数据库的 SNC1 基因座中两个转录因子 LHY1 和 bHLH28 的结合。这是从浏览器图像中重新绘制的。结合用彩色块表示,高度代表检测到的结合水平。(b)野生型或 bon1 中突变体 bhlh28 和 lhy1 的生长表型。植物在 22°C 下 16 小时/8 小时光照下生长。(c)通过定量实时聚合酶链反应 (qRT-PCR) 测定 bhlh28 和 lhy1 单突变体和双突变体与 bon1 的相对 SNC1 表达。肌动蛋白被用作参考基因,并将表达水平与 Col-0 进行比较。显示的是三次生物学重复的平均值,误差线表示标准差。不同字母表示基因型之间的统计学显著差异(p < 0.05,学生 t 检验)。(d)LHY1-GFP 和 bHLH28-GFP 与 SNC1 启动子区的染色质免疫沉淀 (ChIP)-qPCR 分析。分别在“A”位点和“B”位点(如 a 所示)检测到 LHY1-GFP 和 bHLH28-GFP 的结合。显示了两个独立生物学重复的数据。“N”位点(如 a 所示)是 SNC1 基因体上的一个区域,在 DAP-seq 数据库中未检测到 LHY1 或 bHLH28 的结合信号。“GFP”是用抗 GFP 抗体孵育的样品,“NoAb”是不含抗 GFP 抗体的样品。不同字母表示通过单因素方差分析(ANOVA)得出的基因型间统计学差异具有显著性(p < 0.05)[彩色图可在 wileyonlinelibrary.com 上查看]
缺失序列:在功能上表征高度保守的DNA的物种特异性缺失。生物学中剩下的一个主要问题是基因组中的基本物种差异是如何编码的。基因组序列技术最近才能比较数百种物种的高质量基因组。然而,由于三个原因,很难解释定义物种的基因组区域:1)准确的基因组比较和比对在计算上是密集的; 2)搜索空间很大,仅哺乳动物就有数百万的可排列碱具不同; 3)这些序列差异主要是在难以预测功能的非编码的,潜在的基因调节区域中。一组可以实验的基因组元素是保守的缺失(Condels) - 由于其强烈的序列保守1所示,该区域显示了功能证据的区域1。condels可能具有独特的信息,因为它们可能会导致缺失驱动的物种特异性功能。首先,我将基于高通量全基因组对齐方式开发新的计算方法,以识别数百种物种的der孔,从而大大扩展了物种特异性基因组元素的目录。使用此新增强的数据集,我将使用大量并行的记者测定法(MPRA)测定多个哺乳动物的100,000多个秃鹰的功能。最后,我将通过识别condels子集的差异结合的转录因子来探讨condel函数如何内源性(图1)。这将使我们和其他研究人员开始审问序列变化和物种形成的相互作用。AIM 1:在计算上识别哺乳动物基因组中的秃鹰及其潜在影响。首先,我将为几种不同的脊椎动物创建对齐方式,以识别特定物种的缺失。虽然已为人类和小鼠等普通物种产生了整个基因组,但已经生成了比较多样的一致性,但锚定在各种分类单元上的组件,这些分类群缺乏各种焦点物种中的缺失。i将使用29个哺乳动物项目和脊椎动物基因组项目中的新基因组建立多个对齐,从卵形群到人类2,3。对于这157种,我将使用每个物种最接近所有其他基因组的多样对齐,从而产生一系列保守元素的列表,这些元素被预测存在于其最新的共同祖先4,5中。目标物种将被排除在此分析之外,以免偏向哪些区域被识别为保守。然后,我将建立一个成对的对准,以识别特定于物种4的缺失。云计算使得将整个基因组对齐方法缩放到可行的数百种新可用的基因组。使用这种高度详细的脊椎动物秃鹰目录,接下来,我将确定影响基因调节性特征和基因表达的秃鹰的子集,进而确定表型。为了识别物种特异性的调节元件重叠的秃鹰,我将首先比较20个哺乳动物6的现有基因调节图,重点是肝脏,因为该组织具有最多的跨物种功能数据。AIM 2:使用高通量报告基因测定法测试来自多个物种的秃鹰。我还将使用组织匹配的转录组数据6将这些秃鹰与整个基因组中的基因表达相关联,因为调节元素可以长距离起作用。虽然大多数调节性和表达变化被预计会导致功能丧失,但在某些情况下,变化可能会删除抑制性调节序列,从而导致功能增长。i将比较condels do的秃鹰,而不是不显示肝脏对调节作用的证据,寻找序列年龄,复杂性,基因组位置或其他功能进化模式的差异。如果我的计算管道失败,我可以调查已发布的1,较小的condel集与最近发表的基因调节数据集7的相关性。在随后的随访中,我可以在人类和小鼠7中使用已经存在的全身调节图富含dy的其他组织,以扩展到肝脏之外。预测非编码元件的潜在功能很困难,因为没有类似于蛋白质编码密码子字母的“语法”。但是,像大量平行的报告基因测定法(MPRA)这样的新的高通量测定法使我们能够直接测量> 50,000个序列构建体对基因表达的单个影响。mpra是一种偶发测定
adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test (1.1, 2.2) the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test. (1.2, 2.2) in combination with pemetrexed and platinum-based chemotherapy, the first-line treatment of adult patients with locally advanced or metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test. (1.3, 2.2) the treatment of adult patients with metastatic EGFR T790M mutation- positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy. (1.4, 2.2)
Type of mutations: 突变的种类1. Substiutions of nucleotide/amino acid 取代2. Insertions and deletions 插入或去除3. Early stop/truncation/extension 截短或增长4. Duplications 复制
目前,Cas9 和 Cas12a 系统被广泛用于基因组编辑,但它们精确产生大片段染色体缺失的能力有限。I-E 型 CRISPR 介导广泛和单向的 DNA 降解,但迄今为止,控制 Cas3 介导的 DNA 缺失的大小已被证明是难以捉摸的。在这里,我们证明了 Cas9 的内切酶失活 (dCas9) 可以精确控制哺乳动物细胞中 Cas3 介导的大片段缺失。此外,我们分别报告了使用 CRISPR/Cas3 和 dCas9 控制的 CRISPR/Cas3 在小鼠中消除 Y 染色体和精确保留 Sry 基因。总之,dCas9 控制的 CRISPR/Cas3 介导的精确大片段缺失为通过染色体消除建立动物模型提供了一种方法。该方法也有望成为治疗涉及额外染色体的片段突变或人类非整倍体疾病的潜在治疗策略。
图 5 . 基于 CRISPR-Cas9 的 pepC 和 sacB 基因多重基因组编辑。(A)以 mRFP 或 sfGFP 为目的基因的单基因缺失、多重缺失和多重整合的结合和编辑效率。Y 轴上提供结合效率(灰色)和编辑效率(橙色)。编辑效率条顶部的数字表示筛选的接合子总数。误差线表示标准偏差。在确定编辑效率之间的显著差异时,考虑 P 值 < 0.05(* p < 0.05;** p < 0.01)。与单基因缺失和多重缺失相比,多重 mRFP 整合具有显著差异,与单基因缺失相比,多重 sfGFP 整合也具有显著差异。 (B) P. polymyxa 突变体的显微图像,其中 sfGFP 取代了 pepC 和 sacB 基因。(左) 明场图像;(右) GFP 通道。(C) 筛选过程中获得的野生型和突变体的比例以饼状图形式提供。
• 可以进行DNA编辑的工具 • 由Cas9蛋白和gRNA组成 • gRNA识别并切割目标序列。 • 切割的序列主要通过末端连接(NHEJ)或同源重组(HDR)进行修复 • NHEJ容易发生缺失和突变等错误→适用于基因缺失 • HDR可以根据供体DNA的设计引入所需的序列。
简单的摘要:大约15%的患有先天性心脏病(CHD)的患者具有特定的遗传异常,称为拷贝数变体。他们的大多数基因检测(称为染色体微阵列(CMA))被认为是正常的。但是,我们怀疑即使在测试结果中没有报告过一些很小的遗传缺失,也可能与CHD有关。为了调查这一点,我们研究了319例CHD患者的基因测试数据。然后,我们专注于这些与CHD相关的小缺失中的基因,基于某些标准,例如它们与CHD的关联,其在胎儿心脏中的表达水平以及失去这些基因的潜在影响。分析数据后,我们发现这些未报告的小遗传缺失的可能性更大的可能涉及与CHD相关的基因以及可能很重要但以前尚未识别的基因。我们的研究表明,可以随时获得的“正常”基因测试数据对于发现与CHD的新遗传联系很有价值。此外,还应给予较小的遗传缺失,以使冠心病的潜在影响更加临床关注。
和Y染色体微缺失(YCMS)约有15%至30%的男性不育病例(Hess and Renato de Franca,2008; Leaver,2016),Y染色体微缺失,尤其是遗传学学尤其是遗传学学的15%的严重的寡素蛋白酶和azoospermia and azoospermia(Arumugia)(Arumumia and Arumumia and and and and)。Vogt等。(1996)在1996年,根据它们在Azoospermic雄性中的不同阶段中的角色,在YQ11的三个子区域内划定了76个离散的“微骨骼”位点,将它们在功能上归类为AZFA,AZFB和AZFC区域,并将其分类为AZFC区域,并将其与AZFC区域(每种与男性的雌性精神病相关)。此外,Kent-First等。(1999)后来发现AZFD是位于AZFB和AZFC之间的独特基因结构。不育男性中YCM的检测率表现出显着的地理和种族差异,伊朗的AZF缺失率为24%,在美国为12%,在德国和奥地利为少于2%(Cioppi等人,2021年)。Haiyang Yu等人的研究。 (2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。 Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。 AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。Haiyang Yu等人的研究。(2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。作为AZFA区域具有对精子发生必不可少的基因,其缺失意味着即使使用诸如显微解剖睾丸精子提取的过程,也无法获得精子。缺失包含AZFB和AZFC导致Sertoli细胞综合征或精子毒性停滞,而受影响的个体通常会出现Azoospermia(Mahadevaiah等,1998; Yan等,2017)。AZFC缺失构成了最常见的AZF微骨骼类型,约占Y染色体微缺失的60%。近年来,由于其高表型异质性,研究人员专注于AZFC区域内的“部分缺失”,表现为多种程度的精子生成功能障碍:Oligozoospermia和Azooospermia和Azooospermia(Kühnert等人(Kühnert等人,2004年,2004年);然而,由于可能产生正常精子,具有AZFC缺失的个体可能代表了能够使生物后代的YCMS患者的唯一子集。欧洲雄科学院(EAA)和欧洲分子遗传学质量网络(EMQN)推荐SY84和SY86作为首选序列标记的位点(STS),用于评估AZFA缺失,因为它们的缺失高度表明完全表明完整的AZFA缺失(Krausz等,2014)。sts是指具有精确基因组位置的短而单拷贝的DNA序列,可以通过聚合酶链反应(PCR)检测到(Olson等,1989),作为人类基因组中的地标,以确定DNA的取向和指定序列的相对位置。在对AZF区域的研究中,STS被用作检测微缺失的基因座。通过通过PCR检查这些基因座,我们可以确定Y染色体AZF区域中微缺失的状态,这对于诊断男性不孕症非常重要。然而,最近的研究表明,在AZFA地区具有部分缺失的少数男性,包括涉及SY84或SY86的男性,表现出正常的精子发生和生育能力