18医学遗传学,意大利锡耶纳大学,锡耶纳大学医院19医学遗传学,锡耶纳大学,意大利锡耶纳大学20 Med Biotech Hub和能力中心,医学生物技术系,锡耶纳大学,锡耶纳大学,意大利锡耶纳大学,意大利21分子与发展学系, 53100,意大利锡耶纳
其他人Maimuna S Paul,Anne。 Agolini, Antonio Neveli, Ulrique, Tobias B Haack, Wolfram Heinritz, Eva Matzker, Alhaddad Bader, Rami Abou Jamra, Tobias Bartolomaeus, Saber AlHamdan, Raphael Carapito, Bertrand Isidor, Seamak Bahram, Ortal Barel,Bruria Begrup,Deanna Alexis Carere,Sureni V Mullama,Timothy Blake Palcullic,Daniel G Camegame,Schwaness。 Izmayilova,Banka Siddharth,Low-Tuan和Pankaj B Agrawal
Baptiste Morel,Pierre Bertault,GéraldineFavrais,Elsa Tavernier,Barthelemy Tosello等。诊断和介入成像,2021,102(4),pp.225-232。10.1016/j.diii.2020.10.009。hal-03324508
源于遗传和生物力学因素之间的动态相互作用所产生的发展复杂性,使基因型和表型在进化中的变化方式变化。作为范式系统,我们探讨了发育因素的变化如何产生典型的牙齿形状过渡。由于牙齿发育主要是在哺乳动物中研究的,因此我们通过研究鲨鱼中牙齿多样性的发展为更广泛的理解做出了贡献。为此,我们建立了一个通用但现实的,数学的数学模型。我们表明,它重现了牙齿发育的关键特征,以及小斑点catsharks scyliorhinus canicula的真实牙齿形状变化。我们通过与体内实验进行比较来验证我们的模型。引人注目的是,我们观察到牙齿形状之间的发育过渡往往是高度退化的,即使对于复杂的表型也是如此。我们还发现,参与牙齿形状转变的发育参数集往往不对称地取决于该过渡的方向。一起,我们的发现为我们对发展变化如何导致自适应表型变化和特质在复杂的,表型高度多样化的结构中的理解提供了宝贵的基础。
摘要 虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍然缺乏高效产生精确点突变的有效方法。在这里,我们展示了碱基编辑器可以高效地产生 C 到 T 的点突变,而不会产生其他不必要的靶向突变。此外,我们建立了一种识别 NAA 原型间隔区相邻基序的新编辑器变体,扩展了斑马鱼的碱基编辑可能性。利用这些方法,我们首先在 ctnnb1 基因中产生了碱基变化,模仿已知会导致内源性 Wnt 信号组成性激活的人类基因致癌突变。此外,我们精确靶向了包括 cbl 在内的几种癌症相关基因。利用最后一个目标,我们创建了一种新的斑马鱼侏儒症模型。我们的研究结果共同扩展了斑马鱼作为模型系统的潜力,为内源性调节细胞信号通路和生成人类遗传疾病相关突变的精确模型提供了新方法。
对监管机构负责评估风险的许多化学物质中很少有人对发育神经毒性(DNT)进行了仔细的测试。为加快测试工作以及减少脊椎动物的使用,付出了巨大的努力,致力于替代实验室模型进行测试。DNT的主要机制是由于神经发育过程中化学暴露而改变的神经元结构。Caenorhabditis秀丽隐杆线虫是神经生物学家和发育生物学家广泛研究的线虫,在较小程度上由神经毒理学家进行了研究。秀丽隐杆线虫中神经系统的发育轨迹很容易可视化,通常完全不变并且完全映射。因此,我们假设秀丽隐杆线虫可能是一个强大的体内模型,以测试化学物质,以改变神经元结构的发育模式。为了测试这是否可能是真的,我们开发了一种新型的秀丽隐杆线虫DNT测试范式,其中包括整个发育中的暴露,检查所有主要神经递质神经元类型以进行建筑改变,并测试针对多巴胺能,胆碱能和谷氨酸氨酸性功能的行为。我们使用这种范式来表征早期暴露于发育神经毒性铅,镉和苯并(A)pyrene(BAP)对多巴胺能,胆碱能和谷氨酸氨基氨基氨基氨基甲基体系结构的影响。我们还评估了暴露是否会改变神经元规范,这是通过表达特定神经递质诊断的表达来评估的。我们尚未确定我们检查的神经元明显的神经递质类型发生的情况,但许多神经元形态发生了变化。我们还发现,在秀丽隐杆线虫中,神经元特异性的行为是针对人群中期的秀丽隐杆菌中的,在早期阶段的形态神经退行性变化。功能变化与我们观察到的神经元类型的形态变化一致。我们确定了与哺乳动物DNT文献中报道的变化一致的变化,从而加强了秀丽隐杆线虫作为DNT模型的案例,并进行了新的观察结果,应在以后的研究中进行跟进。
摘要:前脑是脊椎动物中枢神经系统最复杂的区域,其发育组织存在争议。我们使用亲脂性染料和 Cre 重组谱系追踪对胚胎鸡前脑进行了命运映射,并建立了大脑生长的 4D 模型。我们通过多重 HCR 揭示了归因于祖细胞区域的各向异性生长的模块化模式。形态发生以朝向眼睛的方向生长、丘脑前部和背侧端脑的更等长扩张以及腹侧细胞向前移动到下丘脑为主。在鸡中进行的命运转换实验以及在鸡和小鼠中进行的比较基因表达分析支持将下丘脑置于从端脑延伸到丘脑内界带 (ZLI) 的结构的腹侧,背腹轴在 ZLI 的底部变形。我们的研究结果对广为接受的前脑组织前体模型提出了挑战,并提出了一种替代的“三部分下丘脑”模型。
最近,人们对诊断开发性疾病(DP)(Burns,2024; Burns等,2023; Degutis&Campbell,2024; Degutis et al。,2023; Gerlach et al。,2024; Lowes等,2024; Lowes et al。,2024)。Several topics have been discussed, including how much prevalence rates of DP vary depending on inclusion cut-offs ( DeGutis et al., 2023 ), whether self-report data should weigh more than objective test scores ( Burns et al., 2023 ; 2024 ), how correlation between tests can bias prev- alence estimates ( Gerlach et al., 2024 ), and how response time data can improve diagnostic sensitivity ( Lowes等人,2024)。在这里,我们添加了有关排除标准的讨论,该讨论可用于排除面部识别术的替代解释。我们关注我们收集数据的两个标准,即中级视觉删除(即,与“低级”图像表示和“高级”对象和场景的“高级”解释联系起来的中间视觉过程的麻烦)和自闭症特征,并且我们在1479人中估算了他们的预期,以估算他们的预期,他们可以自我诊断为自我诊断的人,他们会自我诊断为您的自我诊断。取决于纳入标准,7 E 11%的DP可能出现中级视觉效果,14 E 21%
自闭症谱系障碍 (ASD) 是指一系列神经发育障碍,其特征是社交技能、重复行为、言语和非言语交流方面的挑战(美国精神病学协会,2013 年)。自闭症症状在儿童早期出现并持续一生(Christensen 等人,2016 年)。ASD 表现的一个核心特征是其在发病、合并症、行为表现和治疗反应方面的异质性,以及异质性的遗传和神经生物学基础(Lombardo 等人,2019 年)。针对遗传、环境和神经发育生物学因素的开创性研究可能有助于理解在 ASD 人群中观察到的更广泛的表型表现。在这个框架内,阐明大脑表型如何决定特定的社会和认知特征可以为临床医生提供有价值的见解,有助于将研究结果转化为临床实践,并支持实施量身定制的干预措施。从这些陈述中产生了创建当前研究主题的启发性想法,该主题收集了最新的前沿贡献,揭示了有关 ASD 的神经生物学和遗传特征的重要见解。最后,当前的研究主题包括 11 篇论文(一篇评论论文、两篇假设和理论论文和八篇原创研究)。在本文中,我将讨论不同的主题:(i) ASD 中报告的大脑解剖学差异及其与临床表型的关系;(ii) 动物和人类研究中的遗传变异和对 ASD 发病机制的生物学意义。最后讨论了未来的发展方向。在过去的几十年里,多种微妙的大脑结构改变似乎与 ASD 症状有关。这些解剖变化包括非典型皮质厚度(Hardan 等人,2006 年;Hyde 等人,2010 年)、灰质体积增加(Retico 等人,2016 年;Lucibello 等人,2019 年)、大脑结构不对称改变(Gage 等人,2009 年;Floris 等人,2016 年;Postema 等人,2019 年)以及微结构连接中断(Cheon 等人,2011 年;Ameis 和 Catani,2015 年)。Weber 等人通过检查代表不同年龄组的大量 ASD 和对照患者数据集中的扩散张量成像 (DTI) 指标和连接组边缘密度,评估了年龄对白质微结构完整性的影响。作者表明,与年龄相关的自闭症相关变化在青少年和年轻人中很明显,但在婴儿中并不明显
目的:人类肠道真菌群由多种真菌物种组成,尽管与细菌种群相比数量相对较少,但其在健康和疾病中发挥着至关重要的作用。本综述概述了真菌群的组成、发育模式和各种病理条件下的菌群失调。此外,还讨论了肠道微生物群内真菌群落的复杂相互作用。当前内容:肠道真菌群的发展遵循与细菌微生物群相似的模式,出生方式、饮食和年龄是关键决定因素。与细菌趋势相反,真菌群多样性在儿童和老年时期增加。最近的研究表明,不同种族群体的真菌群组成存在差异。真菌群失调与自身免疫、胃肠道和心血管疾病有关。某些真菌,尤其是白色念珠菌,在病理状态下相对更丰富。真菌代谢活动,特别是次级代谢产物的产生,可显著影响疾病进展。肠道微生物群中的细菌-真菌相互作用很复杂,受饮食和抗生素使用等环境因素的调节。此外,肠道真菌群调节治疗效果。肠道真菌通过生物转化增强天然产物化合物的生物活性,包括其抗癌和抗炎作用。这表明肠道真菌群具有优化天然产物治疗效果的潜力。结论:本综述强调了肠道真菌群作为诊断生物标志物和治疗靶点的相关性。未来的研究应侧重于阐明真菌群变化与疾病状态之间的因果关系,并进一步探索肠道生态系统中的细菌-真菌相互作用。