• NAVSEAINST 8020.19 Rev A 军械 ESD 安全计划 • 联合军械测试程序 (JOTP-062) 军械人员携带 ESD (PESD) 和直升机携带 ESD (HESD) 要求 • 适用于新的或经过修改的海军/海军陆战队军械 • 基于 MIL-STD-331 引信规范的要求 • MIL-STD-464 Rev D:参考 JOTP-062(Rev C 参考 MIL-STD-331) • 涵盖 25 kV 人员携带和 300 kV 直升机携带 • 通常不包括制造、返工或非军事化 • MIL-DTL-23659:EID 规范。仅限 25 kV。旧版本只有 5000Ω
摘要:固体中热传输的动态调整在科学上吸引了电子设备中热传输控制的广泛应用。在这项工作中,我们演示了一个热晶体管,该设备可以使用外部控制来调节热流,该设备通过拓扑表面状态在拓扑绝缘体(TI)中实现。通过使用沉积在Ti膜上的薄电介质层的光控来实现热传输的调整。使用微拉曼温度法测量栅极依赖性导热率。在室温下,晶体管的开/关比为2.8,可以通过光门传感进行连续,重复地以数十秒钟的速度切换,并且通过电控速度更快。这样的热晶体管具有较大的开/关比和快速切换时间,为未来电子系统中的主动热管理和控制提供了智能热设备的可能性。关键字:热晶体管,热开关,静电门,拓扑绝缘子
请注意,电荷产物周围没有垂直条。如果两种电荷都是正或均为负的,则该产品为正,并且力是排斥的。⃗f 12的方向与ˆ r 12的方向相同。另一方面,一个电荷为正,另一个负数为负,则Q 1 Q 2为负,这使得力吸引人。⃗f 12的方向与R 12的方向相反。
空气•带电颗粒/微生物的静电沉淀。因此,静电过滤器由两个单独的部分构建:•电离部分•收集/沉淀部分。在第一阶段粒子和微生物中'(即细菌,孢子,酵母)充电发生在电离部分,通过产生正阳性或负电晕放电的电极。在第二阶段中,在一组平行的电动电荷收集板上,在收集部分中发生了先前带电的颗粒和微生物的静电沉淀。这些板之间生成的电场捕获颗粒并将其捕获在收集板的表面上。与板的接触会导致任何微生物的立即破坏,并避免在细菌裂解时释放内毒素,就像机械过滤器所发生的那样。
David R. Jovel是南部地区教育委员会和国家研究生委员会的工程和科学学位(GEM)研究生学位的国家联盟(GEM)研究生,致力于博士学位。在佐治亚理工学院航空航天工程学院的高功率电气推进实验室。他赢得了学士学位2012年在德克萨斯大学奥斯汀大学的航空航天工程中,并继续在NASA Goddard太空飞行中心,轨道ATK,Intelsat和Aersospace Corporation等组织中担任各种技术角色。他的主要研究重点是真空室对霍尔效应推进器性能和稳定性的电气设施影响的表征。其他研究兴趣包括射频离子推进器,高功率电推进设备的热管理和非平衡等离子体。
• 联合军械测试程序 (JOTP) ‐062、PESD 和 HESD 文件提供了产生一致且可重复的结果所需的所有程序、要求和数据,而与进行测试的测试设施、测试站点或服务无关。• JOTP 充当联合服务 ESD 测试程序,直到其内容被纳入军事标准、规范和适用文件的下一版修订版。• 目前正在进行的纳入 JOTP-062 语言的努力包括:
可以使用XEP数据采集软件直接从可访问的信号通道中读取直流悬臂偏转信号。可以通过将信号发送到锁定放大器来读取悬臂偏转信号的交流部分,该放大器可以以ω频率读取信号的部分,或以2Ω频率读取信号的部分。一起,这三个信号可用于获取有关样品电气特性的信息。例如,电容在方程式中以电容与尖端间距的比率为c/d。如果Z反馈回路保持尖端到样本距离恒定,则C/D与电容成正比。ω信号是上面公式(2)中标记的术语(b)的系数,包含C/D和表面电势的贡献。假设V DC和V AC是已知的,您仍然无法将电容的贡献和对测量ω信号的表面电势分开。然而,2Ω信号是上面标记(c)的术语的系数,仅包括电容的贡献。因此,2Ω信号可用于使Ω信号归一化,从而隔离表面电势的贡献。
摘要 - 已经研究了使用光电仪和次级电子排放对相邻太空飞行器的无触觉感测,用于地球同步(GEO)应用。随着越来越多的任务发送到Cislunar空间,该技术也可以扩展到那里。但是,Cislunar环境的复杂性给无触摸潜在的传感技术带来了新的挑战。一个主要问题的时间比地理区域短,而在Cislunar地区可能低至10 m。因此,研究了一个在月球周围短德比区域中带电的航天器周围的电力和电势场的模型。呈现了真空(拉普拉斯)和debye -hückel模型,并使用有效的debye长度来扩展模型并更好地代表环境。先前已经在低地球轨道(LEO),安静的地理和小行星环境中研究了有效的Debye长度,但在Cislunar等离子体环境中尚未发现,并且在远距离距离的距离上可以使用电子排放率更高,比预期的距离更大。一旦建立了有效的DEBYE长度和相关模型,通过在NASCAP-2K中的计算(一种飞船 - 系数相互作用软件)中探索了有效的Debye长度和无触摸潜在传感功能之间的关系。然后使用所开发的方法来确定在具有不可忽略的静电势屏蔽的Cislunar地区被动和主动无触摸电势感应是可行的。
1 执行摘要 我们的目标是开发 LETO(月球尘埃减缓静电 μ 纹理覆盖层),这是一种具有多种特性和功能的材料,专门用于月球环境的探索。本研究中实际生产的材料在真正的月球南极环境中性能不佳。然而,这项研究的结果可能为更大的研究工作提供支持,其中可以调整各个组件以允许真正融入其研究中。我们的设计表明,外层或“覆盖层”必须包含几个设计元素才能发挥作用。它应该具有具有纳米微尺度特征的表面结构,我们称之为微结构,它应该具有具有厘米级特征的预定折叠图案,我们称之为宏观结构,并且它应该连接到静电发生器,通过静电发生器可以促进表面充电程度。设计伴随着这三个组件的一些基础研究。本文将描述实现这三个目标的单独努力,并详细解释将它们结合在一起的额外挑战。我们对每个设计组件的可行性进行了多次观察。我们认为,LETO 的加入将有利于 Artemis 任务,并且可以以多种方式使用。
本文介绍了一种静电悬浮器中高速样品检测和位置控制的方法。该算法使用从两个 CCD(电荷耦合器件)相机获取的图像,可以在各种工艺条件下对样品位置进行稳健可靠的检测。结果表明,与 PSD(位置敏感检测器)系统相比,尤其是在恶劣环境和微重力条件下的自主操作期间,该方法有改进。在 7 mm × 7 mm × 7 mm 的悬浮区域内,可以三维方式检测半径为 0.6 mm 至 1.1 mm 的样品的位置,精度为 ± 40µm。两个正交排列的相机以 260px × 260px 的分辨率记录图像,用于每 5 毫秒计算一次位置。还介绍了三个轴的控制模型和相应的位置控制器。该系统在实验室和微重力条件下的落塔、抛物线飞行和 MAPHEUS 探空火箭上成功进行了测试。
