本研究旨在扩大我们目前对脑启发网络科学原理在训练具有稀疏连接的人工神经网络(ANN)中的应用的认识。动态稀疏训练(DST)可以减少ANN训练和推理的计算需求,但现有方法在高连接稀疏度水平下难以保持最佳性能。Cannistraci-Hebb训练(CHT)是一种受大脑启发的增加DST连接的方法。CHT利用无梯度、拓扑驱动的链接再生机制,与完全连接的网络相比,该机制已被证明可以在各种任务中实现超稀疏(1%连接或更低)的优势。然而,CHT有两个主要缺点:(i)它的时间复杂度为O(N·d3) - N节点网络大小,d节点度 - 因此它只能有效地应用于超稀疏网络。 (ii) 它严格选择最高的链接预测分数,这不适合早期的训练阶段,因为此时网络拓扑结构中存在许多不可靠的连接。在这里,我们提出了一个矩阵乘法 GPU 友好的 CH 链接预测器近似值,它将计算复杂度降低到 O(N3),从而能够在大型模型中快速实现 CHT。此外,我们引入了 Cannistraci-Hebb 训练软规则 (CHTs),它采用灵活的策略在链接移除和重新生长中采样连接,平衡网络拓扑的探索和利用。为了进一步提高性能,我们将 CHT 与 S 型逐渐密度衰减策略相结合,称为 CHTss。经验
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月4日。 https://doi.org/10.1101/2025.01.31.636009 doi:Biorxiv Preprint
修道院. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 死亡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 艾滋病2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 anova.negbin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 区域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 细菌 . . . ... ... . . . . . . . . . . . . . . . . 14 beav1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 beav2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 22 凯斯. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 23 汽车93 . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 24只猫。 。 。 。 。 。 。 。 。 。 。 。 ................. ... 。 。 。 。 27 con2tr。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 27 限制-质量。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 28 对比 sdif 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 28 鸡笼。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 29 对应 . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30 冠状病毒抢劫。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 31 冠状病毒特罗布。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. ... . ... . ... . ... . ... . ... 33 中央处理器 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 34 螃蟹 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 35 库欣综合征 . ... . ... . ... . ... . ... . ... . ... . ... . ... ... 37 列举。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 38 剂量.p。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 39名司机。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................................................................................................................................................................. 43 eqscplot .................................................................................................................................................................................................................................................................................................................................................................................................................. 44 农场 .................................................................................................................................................................................................................................................................................................................................................................................................................................................. 44 农场 .................................................................................................................................................................................................................................................................................................................................................................................................................................................. 。 45 英尺。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 46 配合分配器。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 47
库汉技术大学材料综合与加工高级技术的国家主要实验室https://orcid.org/0009-0009-0008-1431-7443
单个粒子冷冻EM可以通过将嵌入在纳米厚的玻璃体冰中的几百万个纯化的蛋白质颗粒可视化到几百万纯化的蛋白质颗粒,从而重建蛋白质的接近原子或什至原子分辨率3D蛋白质。这对应于纯化蛋白质的皮克图,这些蛋白质可以从几千个细胞中分离出来。因此,Cryo-Em具有最敏感的分析方法之一,该方法提供了高分辨率蛋白质结构作为读数。实际上,准备低温EM网格需要超过一百万倍的起始生物材料。为了缩小差距,我们开发了一种微分离(MISO)方法,该方法将基于微流体的蛋白质纯化与冷冻EM网格制剂相结合。我们验证了可溶性细菌和真核膜蛋白的方法。我们表明,Miso可以从一个微克的靶蛋白微克开始,并在几个小时内从细胞到冷冻EM网格。这将纯化缩短了几百到几千倍,并为迄今无法访问的蛋白质的结构表征打开了可能性。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2025年1月2日。 https://doi.org/10.1101/2024.07.25.605188 doi:Biorxiv Preprint
思维是人类大脑活动之一,被称为脑电波,其本质是大脑神经元发出的电脉冲。思维的特性与量子纠缠的特性高度相似且密切相关,如叠加性、非局域关联性、瞬时连接性、一元性等。脑内振荡电脉冲经过放大、调制、量子纠缠等一系列转换,被转换成携带大脑活动信号的量子纠缠电磁波,即携带思维活动信号的载波。载波可以在自由空间中传输,无论距离多远,都可以在其他地方通过解调来检测、记录和检索原始的大脑活动数据,因此生前思维可以永久保存。
对组织培养物,尤其是脑器官的分析需要复杂的整合和协调多种技术以监测和测量。我们已经开发了一个自动化的研究平台,可实现独立设备,以实现以反馈驱动的细胞培养研究的协作目标。我们的方法可以在各种感应和驱动设备之间的物联网(IoT)体系结构中进行连续,交流,非侵入性交互,从而确切地控制了体外生物学实验的时间。框架整合了微流体,电生理学和成像装置,以维持脑皮质器官,同时测量其神经元活性。类器官是用定制的3D打印室进行培养的,并固定在商业微电极阵列上。使用可授权的微流体泵实现周期性喂养。我们开发了一种计算机视觉量估计器,用作反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过一组为7天的小鼠大脑皮层器官进行了验证,比较了手动和自动化方案。在整个实验过程中维持鲁棒的神经活动时,对自动化方案进行了验证。自动化系统启用了7天研究的每小时电子生理记录。通过高频记录揭示了每个样本的中位神经单位射击率都会提高和器官射击率的动态模式。令人惊讶的是,进食不会影响率。此外,在录制过程中进行媒体交换表明对发射率没有急性影响,从而使该自动化平台用于试剂筛查研究。