微通道冷却具有出色的传热特性和最佳整合特性。微通道冷却系统通常由许多微米大小的平行通道组成,冷却液通过。这项技术在过去十年中为电子设备的热管理提出了相当大的影响[1]。从近年来微型制动技术的令人难以置信的进步中受益,微通道冷却板可以制造出来,以非常薄且光线底物的微观平行通道。由于这些原因,在高能量物理实验中的粒子探测器的热管理中,微通道冷却已开始考虑[2]。在高能物理实验中,微通道冷却的首次应用是在Na62实验[3]的GigAtracker(GTK)中进行的,其中硅微通道冷却板用于消除60×40 mm 2 GTK模块的电子设备在局部耗散的热量,同时维持40 mm 2 GTK模块,同时在5下进行了0 cy [4] Sensor Dever in Sensor Dever in Sensor Devers [4]。这项技术后来被用于大型强子对撞机美容实验(LHCB)顶点定位器(VELO)升级[6]。也已对爱丽丝内部跟踪系统(ITS)[7,8]的LS2升级进行了广泛的研究。在这项研究中,我们描述了微通道原型的制造过程和压力测试。对爱丽丝的物质预算贡献和高温均匀性的严格要求[9]需要一项深入的研究,而爱丽丝的社区与CERN,Suranaree Technology(SUT),Thai Microelectronics Center(TMEC)(TMEC)和EpletechniquiquefédéraleDeLausanne(Epfl deSanne(Epfl)进行了密切合作。
德国理论物理学家 Sabine Hossenfelder 在一段 YouTube 视频中批评了这项工作,该视频的观看人数超过 25 万,他指出,“这项实验中的负时间与时间的流逝无关——它只是一种描述光子如何穿过介质及其相位如何变化的方式。”
摘要。为了模拟多纵向模式和中心频率快速波动的影响,我们分别使用了正弦相位调制和线宽加宽。这些效应使我们能够降低主振荡器激光器的时间相干性,然后我们将其用于进行数字全息实验。反过来,我们的结果表明,相干效率随条纹可见度二次下降,并且我们的测量结果与我们的模型一致,正弦相位调制的误差在 1.8% 以内,线宽加宽的误差在 6.9% 以内。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.10.102406]
1958 年至 1962 年间,美国和苏联在大气层中进行了数次核爆炸试验,其中包括 1962 年 7 月 9 日在约翰斯顿岛上空 400 公里高空发生的 1.4 百万吨爆炸的“星鱼一号”事件(Gombosi 等人,2017 年)。这些试验可视为太空主动实验(即故意扰乱当地环境的实验)的开端。它们展示了高空核爆炸的潜在破坏力,包括产生的电磁脉冲以及放射性裂变碎片可能产生的持久人造辐射带。例如,“星鱼一号”的意外后果之一是使至少七艘低地球轨道 (LEO) 航天器瘫痪,约占当时 LEO 航天器的三分之一(Gombosi 等人,2017 年)。大约在同一时间,范艾伦和他的团队对地球辐射带的根本性发现(Van Allen and Frank,1959 及其中的参考文献)表明了太空环境对航天器和宇航员来说有多么恶劣,以及我们对此知之甚少。在太空时代的推动下,积极的太空实验蓬勃发展,其目标是 (1) 探测基本的等离子体物理现象,(2) 阐明磁层和电离层物理的某些方面,以及 (3) 了解如何控制环境对太空资产的影响。炸弹、光束、加热器、释放、化学倾倒、等离子体羽流、系绳、天线、电压都是跨越数十年研究的积极实验的例子。六十年后,美国的积极太空实验计划发生了巨大变化。太空实验的数量急剧下降,取而代之的是研究强力发射器(如高频主动极光研究计划 (HAARP) 和阿雷西博的设施)引起的电离层加热和变化的地面实验。这种下降可以归因于几个原因,总结起来包括“唾手可得的果实”已经被收获,今天人们对太空环境有了更多的了解,太空飞行变得更加官僚化和风险规避,以及预算压力(Delzanno 和 Borovsky,2018 年)。然而,有许多理由对太空主动实验的未来感到乐观。新的科学和国家安全驱动因素要求进行新的主动太空实验。一个例子涉及磁层-电离层耦合,其中高功率电子束可用于磁场线测绘,并将遥远磁层中发生的现象与其在电离层中的图像联系起来(国家研究委员会,2012 年)。另一个例子涉及辐射带修复,通过在太空中注入电磁等离子体波,可以大大减少高空核爆炸产生的人造辐射带的通量,从而保护关键的太空资产。此外,还有新的成熟技术(超材料、致密相对论
核磁共振 (NMR) 实验的模拟可以成为提取分子结构信息和优化实验方案的重要工具,但在传统计算机上对于大分子(如蛋白质)和零场 NMR 等方案通常难以处理。我们展示了 NMR 光谱的第一个量子模拟,使用捕获离子量子计算机的四个量子比特计算乙腈甲基的零场光谱。我们使用压缩感知技术将量子模拟的采样成本降低了一个数量级。我们展示了 NMR 系统的固有退相干如何在相对近期的量子硬件上实现经典硬分子的零场模拟,并讨论了如何使用实验证明的量子算法在更成熟的设备上有效地模拟科学和技术相关的固态 NMR 实验。我们的工作为量子计算开辟了一个实际应用。
a XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea, b PLS-II Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea, c Photon Science Center, Pohang University of Science and Tech- nology, Pohang 37673, Republic of朝鲜,北北北部研究部,波港科学技术大学Pohang加速器实验室,Pohang 37673,大韩民国Pohang,Pohang科学技术大学E部,Pohang 37673,Pohang 37673,Rusefuce of Rusefore oforea of Contary/korea interiat of Pohang/korea interiatiat of toseaiT of toseai of toseaip,韩国韩国和韩国超级法斯特科学中心。*信函电子邮件:daewoong@postech.ac.kr
Skyrmions是表现出类似粒子的特性的纳米到微米尺寸的磁旋转,可以通过电流有效地移动。这些属性使Skyrmions成为新型数据存储或计算机的绝佳系统。但是,为了优化此类设备,通常在计算上太昂贵了,无法模拟Skyrmions的复杂内部结构。
摘要。多孔培养基中的热传输对于获得地球科学过程的理解和工程应用(例如地热系统设计)至关重要。通常通过假设有热量平衡(LTE;固体和流体相位)或局部热非平衡(LTNE;固体和流体相)来简化热传输模型,但长期以来已经考虑了热传输,并已提出了报告。但是,文献中仍然缺乏具有逼真的晶粒大小和流量条件的实验。为了检测LTNE效应,我们以3至23 md-1的达西速度进行了全面的实验室热传输实验,并分别测量了玻璃球的流体和实心相的温度,直径为5、10、15、20、25、25、25和30 mm。每个大小的四个复制品沿着流路径的离散距离嵌入小玻璃珠中,以稳定流量。我们的传感器经过精心校准,并进行了对调查以显示LTNE,以表达为固体温度和流体温度之间的差异。为了深入了解热传输性能和过程,我们使用普遍接受的LTE方程分析解和LTNE方程的数值解在1D中模拟了我们的实验结果。我们的结果表明,晶粒尺寸和水流速度的增加表现出显着的LTNE效应。由令人惊讶的是,相同深度的流体和实心相之间的温度差异不一致,表明流量轨道中的空间变量可能引起的不均匀热传播。
本技术说明描述了流体流体概念,这是一种用于地质碳储存研究的新实验室基础设施。高度控制且可调的系统可为模型验证,比较和预测提供了惊人的视觉物理基础真理,包括详细的物理研究二氧化碳的行为和储存机制及其在相关地质环境中用于地下碳存储的衍生物形式。描述了设计,仪器,结构方面和方法论。此外,我们在多孔媒体中共享有关构建,操作,流体注意事项和流体重置的工程学见解。新的基础设施使研究人员能够研究重复的CO 2注射之间的可变性,从而使Fluidflower概念成为敏感性研究的合适工具,可用于确定不同地质形成中碳存储参数的范围。
在各个学科中,研究人员正在积极开发技术解决方案,以应对气候变化的紧迫挑战。但是,这些解决方案通常很难与最终用户获得吸引力。一个重要的采用障碍是,最终用户的偏好很少被整合到开发过程中。在没有清楚地了解这些偏好的情况下,创新可能会错过有关可用性或相关性的标记,从而限制了他们的现实影响。通过将见解纳入开发阶段的最终用户偏好中,研究人员可以对多种需求和采用率做出明智的估计。这种方法还加强了成本效益分析,尤其是在考虑如何在各种潜在解决方案之间分配公共资金时。这种明智的决策可以更好地确保资助的解决方案不仅有效,而且可以广泛采用和社会利益。离散的选择实验(DCE)提供了一种强大的混合方法计量经济学工具,该工具对于调查对新的或假设的商品和服务的偏好特别有用,例如这些解决方案尚未引入市场。在DCE中,参与者提供了一组选择,每个选择由各种属性组成。通过分析参与者如何在这些属性之间进行权衡,研究人员可以推断偏好并预测需求。例如,已使用离散选择实验来评估公众对采用电动汽车的利益。本课程将使参与者获得设计,实施,分析和报告离散选择实验的发现的技能。通过提供具有成本,范围和充电便利性等属性的选择,研究人员可以估计哪些功能引起了消费者的兴趣,从而为设计与市场需求保持一致的产品提供了关键的见解。该课程将涵盖DCE的理论基础,但主要重点将放在动手指导上。将鼓励参与者开发自己的离散选择实验,量身定制,旨在探索他们希望调查的良好或服务的偏好。在课程结束时,参与者将不仅了解理论框架,而且还将具有部署DCE的实用经验,以对消费者偏好产生可行的见解。该课程将与MA,M Phil或PhD级别的学生或知名学术机构的教师有关; IES(印度经济局),IAS(印度行政服务)和环境,森林与气候变化部的官员