在这项工作中,我们研究了基于特征的解释对人工智能辅助决策分配公平性的影响,特别关注从简短的文本简历中预测职业的任务。我们还研究了任何影响是如何通过人类的公平感知及其对人工智能建议的依赖来调节的。我们的研究结果表明,解释会影响公平感知,而公平感知又与人类遵守人工智能建议的倾向有关。然而,我们发现这样的解释并不能让人类辨别正确和不正确的人工智能建议。相反,我们表明,无论人工智能建议的正确性如何,它们都可能影响依赖性。根据解释强调的特征,这可能会促进或阻碍分配公平:当解释强调与任务无关且显然与敏感属性相关的特征时,这会提示覆盖与性别刻板印象相符的 AI 建议。同时,如果解释看起来与任务相关,这会引发依赖行为,从而强化刻板印象一致的错误。这些结果表明基于特征的解释不是提高分配公平性的可靠机制。
摘要。需要清楚了解人工智能 (AI) 使用风险及其应对方法,这需要适当和充分的企业披露。我们提出了一个人工智能公平性报告的法律框架,公司可以而且应该在遵守或解释的基础上遵守该框架。我们分析了由人工智能模型的不同方面和机器学习系统性能差异引起的不公平现象的来源。我们评估了机器学习文献如何通过使用不同的公平性指标来解决不公平问题。然后,我们提出了一个细致入微且可行的人工智能公平性报告框架,包括:(1) 披露所有机器学习模型的使用情况;(2) 披露所使用的公平性指标及其随后的权衡;(3) 披露所使用的去偏见方法;(d) 发布数据集供公众检查或第三方审计。然后,我们将这个报告框架应用于两个案例研究。
问题陈述:人工智能公平性规则和基准的标准化具有挑战性,因为人工智能公平性和其他道德要求取决于多种因素,例如背景、用例、人工智能系统的类型等。在本文中,我们阐述了人工智能系统在其生命周期的每个阶段(从开始到使用)都容易产生偏见,并且所有阶段都需要给予应有的关注以减轻人工智能偏见。我们需要一种标准化的方法来处理每个阶段的人工智能公平性。差距分析:虽然人工智能公平性是一个热门的研究课题,但普遍缺乏人工智能公平性的整体策略。大多数研究人员只关注人工智能模型构建的几个方面。同行评审显示过度关注数据集中的偏见、公平性指标和算法偏见。在此过程中,影响人工智能公平性的其他方面被忽略了。提出的解决方案:我们提出了一种新颖的七层模型形式的综合方法,该模型受到开放系统互连 (OSI) 模型的启发,旨在标准化 AI 公平性处理。尽管各个方面存在差异,但大多数 AI 系统都有类似的模型构建阶段。提出的模型将 AI 系统生命周期分为七个抽象层,每个抽象层对应一个明确定义的 AI 模型构建或使用阶段。我们还为每一层提供了检查表,并讨论了每一层中潜在的偏见来源及其缓解方法。这项工作将促进 AI 公平规则和基准测试参数的分层标准化。
在中低收入国家 (LMIC),机器学习 (ML) 和人工智能 (AI) 为解决医疗资源短缺和提高当地医疗基础设施能力提供了有吸引力的解决方案。但是,AI 和 ML 也应谨慎使用,因为如果应用不当,可能会出现公平性和算法偏见问题。此外,由于缺乏技术能力、存在针对少数群体的社会偏见以及缺乏法律保护,中低收入国家的人群特别容易受到人工智能算法的偏见和公平性的影响。为了满足在全球卫生背景下更好指导的需求,我们描述了三个基本标准(适当性、公平性和偏见),可用于帮助评估机器学习和人工智能系统的使用情况:1)适当性是决定如何在本地环境中使用算法的过程,并将机器学习模型与目标人群正确匹配; 2) 偏见是模型中偏向某一人口群体而偏向另一群体的系统性倾向,这种倾向可以减轻,但会导致不公平;3) 公平涉及研究对不同人口群体的影响,并从几种群体公平的数学定义中选择一个,以充分满足所需的法律、文化和道德要求。最后,我们通过一个机器学习应用于印度浦那肺部疾病诊断和筛查的案例研究,说明了如何应用这些原则。我们希望这些方法和原则能够帮助指导正在考虑使用机器学习和人工智能的全球卫生研究人员和组织。
近年来,人工智能 (AI) 已成为我们日常生活中不可或缺的一部分,帮助我们做出决策。在这种交互过程中,AI 算法通常使用人类行为作为训练输入。因此,重要的是要了解人们在训练 AI 时是否会改变他们的行为,以及当训练对他们没有好处时他们是否会继续这样做。在这项工作中,我们在最后通牒游戏的背景下进行行为实验来回答这些问题。在我们的版本中,参与者被要求决定是否接受或拒绝其他人类参与者或 AI 提出的金钱分割提议。一些参与者被告知他们的选择将用于训练 AI,而其他参与者没有收到此信息。在第一个实验中,我们发现参与者愿意牺牲个人收入来训练 AI 变得公平,因为他们变得不太倾向于接受不公平的提议。第二个实验重复并扩展了这一发现,结果显示参与者有动力训练人工智能,即使他们将来永远不会遇到它。这些发现表明人类愿意付出成本来改变人工智能算法。此外,它们表明,人工智能训练过程中的人类行为不一定与基线偏好一致。这一观察结果对人工智能发展提出了挑战,表明人工智能算法在推荐选择时考虑其对行为的影响非常重要。
在此补充信息中,我们将证明并显示在手稿主要部分中使用的几个关键定理和观察结果。在下一节中,我们首先证明了两个与两个多求和器 - 多响应者Ultimatum游戏(MPMR UG)具有独特的进化稳定策略。我们还证明,在复制者的动力学下,人口组成的球员纳什均衡状态,稳定状态的人口扮演着派生的进化稳定策略,尽管在人群范围内。在“一般情况下”,我们将结果从两个和两个mpmr ug扩展到多个响应者和多个建议者的任意数量,并表明,在这种情况下,对于任何子游戏,也有一个独特的进化稳定策略(除了纯零报价外)。此外,我们证明,如果响应者在每个子游戏中扮演此ESS NASH均衡,那么在体面的NASH平衡建议中必须提出相同的优惠。
种族多样性在AI和算法公平文献中越来越多地讨论,但是很少关注的重点是证明种族类别的选择并了解人们如何将人们种族化为这些选择的种族类别。对种族类别的转变以及种族ization过程的变化的关注更少,具体取决于数据集或模型的上下文。对谁包括选择的种族恋爱以及人们如何将种族化的人纳入这些类别的不清楚的理解可能会导致对这些类别的不同解释。当对种族类别的理解和种族化过程的理解与所使用的实际种族化过程和种族类别失错时,这些不同的解释可能会导致伤害。危害。在本文中,我们做出了两种贡献。首先,我们证明了如何具有不清楚的假设和几乎没有理由的种族类别会导致不同的数据集,而这些数据集代表了不良的群体,而这些群体被给定的种族类别和在这些群体上表现不佳的模型所掩盖或没有代表。第二,我们开发了一个框架,循环表格,用于记录选择种族类别的选择和求职者,以及将种族化的过程和这些类别的种族化过程,以促进透明度在选择数据集或建模过程中所做的过程和假设时,在选择或使用这些种族类别时。
委员会对这个问题的回答是一个明显的“是,但是……”。得出的结论是,这三个指令提供了必要的监管确定性和消费者信任的最低限度,但可以将它们视为仅在数字环境中部分有效。5特别是,它确定了各种持续关注的问题,例如广告和合同前信息的透明度;与指令中没有具体规定的新兴技术和实践相关的问题;监管分裂,破坏了数字单市场;增加了针对消费者保护问题的更广泛的数字特定立法产生的监管复杂性;以及与不足,无效的执法和法律不确定性有关的更多一般性问题。
随着人工智能(AI)的辅助搜索和推荐的系统在工作场所和日常生活中变得无处不在,对公平性的理解和核算在此类系统的设计和评估中引起了人们的关注。虽然越来越多的计算研究对测量系统的公平性和与数据和算法相关的偏见,但人类偏见超出了传统机器学习(ML)管道的影响仍在研究中。在此观点论文中,我们试图开发一个双面公平框架,不仅表征了数据和算法偏见,而且还突出了可能加剧系统偏见并导致不公平决定的认知和感知偏见。在框架内,我们还分析了搜索和接收性发作中人类和系统偏见之间的相互作用。基于双面框架,我们的研究综合了在认知和算法中采用的干预策略,并提出了新的目标和措施,以评估Sys-Tems在解决以及与数据相关的风险相关的偏见,Algoryty和Algority and Boundered and Boundered Rationals and boundered Rationals and Indered Rationals and Indered Rationals and Indered Rationals and Indered Rationals and Indered Rationals and Indered rentations。这是唯一地将有关人类偏见和系统偏见的见解纳入一个凝聚力的框架,并从以人为中心的角度扩展了公平的概念。扩展的公平框架更好地反映了用户与搜索和推荐系统的相互作用的挑战和机遇。采用双面信息系统设计中的方法有可能提高在线偏见的有效性,以及对参与信息密集型决策的有限理性用户的有用性。