驱动的多体问题仍然是量子力学中最具挑战性的未解决问题之一。量子计算机的出现可能为有效模拟此类驱动的系统提供了独特的平台。但是,对于如何设计水库有很多选择。可以简单地用Ancilla Qubits充当储层,然后通过算法冷却进行数字模拟。一种更具吸引力的方法,它允许人们模拟有限的储层,它是整合自由度的浴室,并通过主方程来描述驱动的散文系统,该系统也可以在量子计算机上进行模拟。在这项工作中,我们考虑了由电场驱动并耦合到费米子恒温器的晶格上的非相互作用电子的特殊情况。然后,我们提供两个不同的量子电路:第一个使用Trotter步骤重建系统的完整动力学,而第二个则在单个步骤中消散了最终的非平衡稳态。我们在IBM量子体验上运行两个电路。对于电路(i),我们最多达到了5个trotter步骤。当部分重置在量子计算机上可用时,我们希望最大的模拟时间可以显着增加。此处开发的方法提出了可以应用于模拟相互作用驱动的系统的概括。
使用基本代数方法在系统的完整希尔伯特空间中提供了有限温度下的可集成旋转链的确切描述。我们对自旋链模型进行了填充,这些模型接受了自由费的描述,包括范式示例,例如一维横向尺寸量子量子和XY模型。确切的分区函数是得出的,并将其与无处不在的近似值进行了比较,在这种近似中,仅考虑了能量谱的正差异部门。在低温下的临界点附近发现了由于这种近似而产生的误差。我们进一步提供了在热平衡处的一类可观察力的全部计数统计数据,并详细介绍了横向字形量子质量链中的扭结数和横向磁化的方法分布。
2 平衡单粒子格林函数 9 2.1 格林函数的定义.....................................................................................................................................................................................................................................9 2.2 松原格林函数的性质....................................................................................................................................................................................................................................10 2.2.1 周期性和傅里叶级数....................................................................................................................................................................................................................10 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................................. 17 2.4.1 莱曼表示.................................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................................... 17 20 2.4.3 松原频率求和....................................................................................................................................................................................................................20 2.5 2 粒子相关函数....................................................................................................................................................................................................................................................................21
光子量子信息处理是量子技术的主要平台之一 1 – 5,它主要依靠光量子干涉来产生不可或缺的有效光子 - 光子相互作用。然而,由于光子的玻色子性质 7 和传统酉光学元件的受限相位响应 8、9,这种有效的相互作用从根本上局限于聚束 6。在这里,我们提出并通过实验证明了非酉超表面实现的光量子干涉的新自由度。由于独特的各向异性相位响应产生了两个极端的本征操作,我们展示了对两个单光子有效相互作用的动态和连续控制,使得它们表现出玻色子聚束、费米子反聚束或任意中间行为,超出了它们固有的玻色子性质。这种量子操作为基础的量子光物质相互作用和用于量子通信、量子模拟和量子计算的创新光子量子装置打开了大门。超材料是一种具有亚波长元素的结构化材料,可以实现自然界中无法找到的波响应。通过定制超材料,人们已经展示了诸如负折射率、亚衍射成像和隐形斗篷等前所未有的特性 10 – 13 。超表面(二维超材料)使我们能够利用平面光学任意定制经典光的波前和传播 14 – 18 。同时,光子是极好的量子信息载体,因为它们具有长相干时间、室温稳定性、易于操纵和光速信号传输。使用单光子源、分束器、移相器和单光子探测器的量子光子学一直是量子计算、量子模拟和量子通信的主要平台之一 1 – 5 。因此,将超材料无与伦比的光控制与量子光学相结合,可以带来量子信息应用的全新可能性 19 – 22 。光子量子信息处理应用(如线性光学量子计算 1 、玻色子采样 23、24、量子行走 25 和量子通信 26)的核心操作单元是量子双光子干涉 (QTPI)。分束器是此量子操作的关键元素。当两个无法区分的单光子同时到达 50:50 分束器的两个输入端口时,QTPI 表现为洪-欧-曼德尔 (HOM) 效应 6 。在原始的 HOM 实验中,两个光子总是聚集在一起,并以相同的输出离开分束器
ℓ H ℓ 是任意二阶量子化费米子哈密顿量的乔丹-维格纳变换。Select ( H ) 是几种量子算法的主要子程序之一,包括最先进的哈密顿量模拟技术。如果二阶量子化哈密顿量中的每一项最多涉及 k 个自旋轨道,且 k 是与自旋轨道总数 n 无关的常数(文献中考虑的大多数量子化学和凝聚态模型都是如此,其中 k 通常为 2 或 4 ),则我们对 Select ( H ) 的实现不需要辅助量子位,并且使用 O ( n ) Cliufford+ T 门,其中 Cliufford 门应用于 O (log 2 n ) 层,T 门应用于 O (log n ) 层。与以前的工作相比,这实现了 Clifford 和 T 深度的大幅提升,同时保持了线性门数,并将辅助门数减少到零。
其中,我们记为 σ µ = ( I, − σ i ) 和 ˆ σ µ = ( I, σ i )。σ i 是通常的泡利矩阵。在以下的讨论中,我们将处处使用外尔基。现在我们考虑能量为 E(可以为正数或负数)的狄拉克方程的稳态解,它们不过是 Ψ( x ) = e − i Et Φ E ( x )。这里,Φ E ( x ) 满足狄拉克方程 ( 1 ),只是 i∂ 0 处处被 E 取代。稳态提供了一个完整的基础,任何一般解 Ψ( x ) 都可以根据它展开。此外,它们帮助我们看到狄拉克方程的一个重要的内部对称性,称为电荷共轭对称性。如果 Φ(x) 是与能量 E 相关的状态,我们可以找到相应的电荷共轭态,定义为
摘要 相对论费米子场论构成了所有可观测物质的基本描述。最简单的模型为嘈杂的中型量子计算机提供了一个有用的、经典可验证的基准。我们计算了具有四费米子相互作用的狄拉克费米子模型在 1 + 1 时空维度的晶格上的能级。我们采用混合经典量子计算方案来获得该模型中三个空间位置的质量间隙。通过减轻误差,结果与精确的经典计算非常一致。我们的计算扩展到手性对称出现的无质量极限附近,但在这个范围内量子计算的相对误差很大。我们将结果与使用微扰理论的分析计算进行了比较。
最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。
我们表明,单身纠缠是纯粹的费米态偏离Slater决定因素(SD)的衡量标准,并由单粒子密度矩阵(SPDM)的混合性确定,可以视为量子资源。相关的理论具有SDS及其凸面作为自由状态,并且保存费米昂线性光学操作(FLO)的数字包括单体统一转换和单粒子模式占用的测量值,作为基本的自由操作。我们首先是基于纯n- fermion态的schmidt样分解的一体纠缠的两拟合公式,可以得出SPDM [与(n-1)体型密度矩阵]从中得出。随后证明,在FLO操作下,初始和计量后的SPDM始终满足主要化关系,从而确保这些操作平均不能增加一体的纠缠。最终表明,该资源与费米子量子计算模型一致,该模型需要超越反对称的相关性。还讨论了更通用的免费测量以及与模式纠缠的关系。