在聚合物中,在单个水平和链之间的链条折叠和聚集之间的竞争可以确定此类材料的机械,热和导电性能。了解折叠和聚集的相互作用为开发和发现具有量身定制性能和功能的聚合物材料提供了重要的机会。对于常规共价聚合物的非共价对应物也是如此,即,超分子聚合物(SPS)。sps有望用作新型刺激响应性聚合物材料的实际应用。大多数SPS具有单调的一维线性结构,该结构倾向于引起链链聚集,但是很少有SPS的报道可以通过主链折叠形成各种高阶结构。既展示了内部折叠和链链聚合的SP的开发,将为创建新型SP材料提供新的指南,其特性可以由高阶结构控制。最近发表在2024年7月25日在美国化学学会杂志上发表的一项研究报告了一种新的折叠SP,该SP自发进行链链聚集并转化为结晶骨料。借助原子力显微镜(AFM),研究小组证明了展开与聚集之间的关系。这项研究是由Chiba University的Shiki Yagai教授领导的,他是Chiba University科学与工程研究生院的博士课程学生Kenta Tamaki,是第一作者。 “最初,我们发现了一种单体结构,该结构以螺旋形形状聚合。这次,我们部分改变了驱动单体聚合以研究单体聚合物关系的单位结构。令我们惊讶的是,我们观察到了一种现象,螺旋自发地展开,而不同的链条捆在一起。然后,我们合并了一个可相关的分子,以便通过光线通过“任意时机”出现这种“自发”现象,这为我们的研究提供了背景,” Yagai教授说,这项研究背后的灵感。为设计新系统,该团队选择了可扭曲的二苯基和光反应偶氮苯单元作为核心,将其自组装到所需的SPS中。最初以折叠状态形成的SP慢慢地以内部分子顺序进行重排超过半天,并汇总到结晶状态。将偶氮苯单元纳入SPS导致了光诱导的展开,这通过松动折叠环之间的内部稳定来显着加速了这一过程。研究人员观察到,当将折叠的SP溶液保持在20 O C下几天时,聚合物会自发进行结构过渡并沉淀。使用AFM可视化沉淀物时,他们观察到了独特的中间状态,在通往统一的直纤维结构的途中,似乎是弯曲链的结合。这个有趣的图像使研究人员想起了蛋白质折叠不折叠的生物系统中经常观察到的链链聚集,从而导致淀粉样蛋白纤维形成。此外,该团队揭示了这种结构转型背后的原因。这包括由于双苯基单元的构象变化而导致的分子内顺序
• 生活技能 o 社交、全球意识、倾听背景 美国宇航局的韦伯望远镜将利用其卓越的角分辨率和近红外仪器来发现和研究与我们相似的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。韦伯太空望远镜将进行曾经被认为不可能的观测;仅仅为了建造它,就必须发明多种新技术。这面开创性的镜子和强大的仪器将发现和研究遥远的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。它还将深入研究过去,追溯最早的恒星和星系诞生的时代。通过扩展我们对宇宙的了解,望远镜将帮助我们回答这些引人注目的问题:“我们是如何来到这里的?”和“我们是孤独的吗?”诺斯罗普·格鲁曼公司致力于确保这一曾经不可想象的成就成为现实。韦伯望远镜被美国国家研究委员会列为天文学和天体物理学的首要任务,是 NASA 和科学界的一项重要项目,也是美国地面和太空天体物理学项目的核心。负责该项目的诺斯罗普·格鲁曼工程师们的任务并不轻松。人们耗费了一亿个小时的时间来建造这架望远镜,它是有史以来最大、最复杂、最强大的太空望远镜。听听工程师们对自己的成就感到自豪——他们正在书写太空探索历史的下一篇章。https://www.youtube.com/watch?v=rErBbFiLbVc 本课将关注三个领域:1)日本宇宙航空研究开发机构 (JAXA) 将折纸原理作为宇航员选拔过程的一部分。候选人必须在为期一周的观察期间折一千只纸鹤。观察员通过这项任务在时间限制内重复性地分析候选人。 2) 了解参与开发韦伯太空望远镜的人员从事的不同工作以及文化多样性。 3) 折纸原理在太空探索中的作用:a) 卫星和深空望远镜(如詹姆斯·韦伯太空望远镜)的许多部件在太空中展开。科学家必须弄清楚如何设计每个部件,使其在发射后正确展开。
图2:(a)弯曲角α的石墨烯片。橙色圆圈表示带有弯曲段的区域,如(b)所述。(b)弯曲石墨烯蜂窝结构,显示碳碳键。每个二面角θ(从C-C键的平面扭曲中)由连接原子(红线)的三个键(4个碳原子)定义。二面角确定弯曲。由3个碳原子给出的两个相邻的碳键角用φ和ψ表示,它们定义了每个平面(分别为紫色和绿色)。
半个多世纪以来,蛋白质折叠一直是最困难的问题之一,随机热运动导致构象变化,从而导致能量下降到天然结构,这是漏斗状能量景观中捕获的原理。未折叠的多肽具有广泛的可能构象。由于潜在构象随链长呈指数增长,搜索问题对于经典计算机来说变得难以解决。到目前为止,有理论和实验证据表明,使用量子退火、VQE 和 QAOA 等量子计算方法解决此类优化问题具有优势。虽然谷歌的 DeepMind-AlphaFold 已经取得了很大成就,但我们可以通过量子方法走得更远。在这里,我们展示了如何使用变分量子特征求解器预测蛋白质结构以及 RNA 折叠,并使用条件风险值 (CVaR) 期望值来解决问题并找到最小配置能量,我们的任务是确定蛋白质的最小能量结构。蛋白质的结构经过优化以降低能量。还要确保满足所有物理约束,并将蛋白质折叠问题编码为量子比特算子。
脑回形成过程是大脑发育过程中生物和机械过程相互作用的结果,大脑通过脑回形成复杂的脑回丘和脑沟谷结构。研究人员开发了大量计算模型来研究皮质折叠。本综述旨在总结这些研究,重点介绍影响大脑发育和脑回形成的五个基本要素以及它们在计算模型中的表示方式:(i) 颅骨、脑膜和脑脊液的限制;(ii) 皮质层和区域的异质性;(iii) 皮质下纤维束的各向异性行为;(iv) 脑组织的材料特性;(v) 大脑的复杂几何形状。最后,我们重点介绍了未来模拟大脑发育的领域。
摘要 RNA 的结构变化是控制基因表达的重要因素,不仅在转录后阶段,而且在转录过程中也是如此。位于初级转录本 5' 区域的核糖开关和 RNA 温度计的子类通过提前终止转录来调节下游功能单元(通常是 ORF)。此类元素不仅自然存在,而且在合成生物学中也是颇具吸引力的装置。因此,设计此类核糖开关或 RNA 温度计的可能性具有相当大的实际意义。由于这些功能性 RNA 元素在转录过程中已经起作用,因此重要的是模拟和了解折叠的动力学,特别是与转录同时形成的中间结构。因此,在进行昂贵且劳动密集型的湿实验室实验之前,共转录折叠模拟是验证设计构造功能的重要步骤。对于 RNA,由于分子的大小和感兴趣的时间尺度,全面的分子动力学模拟远远超出了实际范围。即使在简化的二级结构级别,也需要进一步的近似。 BarMap 方法基于表示二级结构景观
在识别分子机器(包括折叠有丝分裂染色体的冷凝剂和拓扑异构酶)方面取得了巨大进展。通过环挤出产生染色质环路的发现彻底改变了染色体折叠的领域。要了解这些机器如何用适当的尺寸折叠染色体,同时解散姐妹染色单体,需要确定如何调节和部署它们。在这里,我们概述了当前对这些机器和因素如何通过细胞周期依赖性表达,染色质定位,激活和非活性来调节,通过翻译后修改以及通过与其他因素以及染色质模板本身相互关联。仍然有许多关于如何调节冷凝剂和拓扑异构酶的开放疑问,但考虑到染色体折叠式折叠型的速度,似乎在未来几年中,其中许多可能会得到回答。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(本版本发布于5月29日,2021年。; https://doi.org/10.1101/2021.05.27.4446060 doi:biorxiv Preprint