第1天:转染。将GRNA - 黎病毒质粒与病毒包装质粒一起转染到HEK293T细胞中。第2天:第一批病毒的收获。早上用新鲜培养基代替转染介质,并在8小时后收集第一批细胞上清液。第3天:第二批和第三批病毒的收获。分别在清晨和午后收集细胞上清液。使用45μm的孔滤器过滤慢病毒上清液,以去除所有剩余的细胞碎片。立即使用它或等分病毒存储在-80°C下。3。病毒感染。
感谢您为您的实验选择Arrayed Crispr Grna库!Editco的人类和小鼠筛选库利用多指导SGRNA的策略性设计来消除您感兴趣的人类或小鼠蛋白质编码基因。SGRNA在靶向基因组基因座处共同引起片段缺失,因此破坏了基因功能并使其非常适合丧失功能筛选。Editco库的阵列格式,其中一个基因在多井板上的每个孔都被靶向,从而消除了对复杂数据反卷积的需求,并且与各种功能测定兼容。此快速启动指南提供了有关如何准备,使用,存储和量化SGRNA库的说明。
• 并行使用至少两个独立的 gRNA 序列来获得不同的克隆。通过基因组编辑创建的模型使用不同的 gRNA,这些 gRNA 共享靶位点,但不共享脱靶位点,是创建独立重复的绝佳方法。 • 为每个使用的 gRNA 分离多个独立的克隆细胞群。在独立克隆中,脱靶 DSB 发生在相同位点的可能性非常低。 • 虽然很少有实验室有资源进行统计上强大的全基因组测序验证协议(例如 gUIDEseq),但相对容易地为每个您使用的 gRNA 选择几个预测的脱靶序列,然后围绕这些位点进行测序,以确保没有引入脱靶插入/缺失。
碱基编辑器是一类有前途的下一代基因组编辑技术,既可以精确纠正致病的遗传变异,又可以同时安全地敲除多个基因靶标。Pin-point 碱基编辑平台是一个模块化组装的 DNA 结合 Cas 和 DNA 修饰脱氨酶组件,它们通过序列靶向向导 RNA (gRNA) 中编码的适体连接。碱基编辑器应用中的一个主要挑战是准确地通过计算机预测给定 Cas 和脱氨酶组合在目标序列上的编辑效率和特异性。Pin-point 碱基编辑系统的模块化允许创建大量配置,这些配置的 PAM 特异性、序列编辑偏好和编辑效率可能有所不同。为了促进和加速基于 Pin-point 平台的应用程序开发,我们创建了一个自定义工具来设计 gRNA 以靶向感兴趣的基因并安装碱基转换,包括那些会引入过早的终止密码子或破坏剪接位点以敲除目标基因的转换。此外,我们进行了大规模并行细胞筛选,以分析两种不同的 Pin-point 碱基编辑器配置的编辑活动,其中 gRNA 靶向数千个目标序列。我们使用从筛选中获得的数据构建了每种配置观察到的编辑结果的模型。我们应用这些模型对设计用于产生多个临床相关基因靶标(包括 CIITA 和 PCSK9)功能性敲除的 gRNA 进行排序。在分析了计算机预测与 gRNA 的细胞性能之间的相关性后,我们确认模型预测与 Pin-point 碱基编辑平台观察到的编辑效率准确相关。自定义 gRNA 设计工具和预测模型的结合导致识别出一种新型、高效的 gRNA,它能够通过破坏剪接位点来敲除 PCSK9,并且我们确认了文献中先前报道的其他 gRNA 设计的预测性能。我们的 gRNA 设计规则是使用我们广泛的基于细胞的性能数据集得出的,从而创建了可靠的自定义工具来优先考虑 gRNA 并选择具有最高编辑效率的 gRNA。
基础编辑者是一类有希望的下一代基因组编辑技术,具有精确纠正引起疾病的遗传变异的潜力,并同时安全地敲除多个基因靶标。在一种配置中,PIN点碱基编辑平台是DNA结合Cas的模块化组件和DNA修饰的脱氨酶成分,通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件。通常,基本编辑器在应用中的应用中,可以准确地预测CAS和脱氨酶组合的目标序列的编辑效率和特异性。PIN点底座编辑系统的模块化允许创建大量配置,它们的PAM特异性,序列编辑偏好和编辑效率可能会有所不同。为了促进和加速基于PIN点平台的应用程序的开发,我们创建了一种定制工具来设计GRNA,以针对感兴趣的基因并安装基本转换,包括那些将引入早产停止密码子或破坏剪接站点以敲除目标基因的基础转换。此外,我们进行了一个大规模的平行细胞屏幕,以分析两个不同的针对点基本编辑器配置的编辑活性,其GRNA针对数千个目标序列。我们使用从屏幕获得的数据来构造每种配置的观察到的编辑结果模型。我们将这些模型应用于旨在产生多个临床上相关基因靶标的功能敲除(包括CIITA和PCSK9)的功能敲除。分析了IN硅预测与GRNA基于细胞的性能的相关性后,我们确认该模型预测与Pin-Point Base编辑平台观察到的编辑效率相关。自定义GRNA设计工具和预测模型的组合导致了一种新型,高效的GRNA来识别能够通过破坏剪接站点来敲除PCSK9的识别,我们证实了文献中先前报道的其他GRNA设计的预测性能。使用我们基于细胞的广泛性能数据集告知我们的GRNA设计规则,创建可靠的自定义工具来优先考虑GRNA并选择具有高编辑效率的人。
www.genomics-online.com美国和加拿大订购:+1 877 302 8632 | support@antibodies-online.com第1/2页| ABIN5172545的产品数据表| 09/12/2023 |版权抗体在线。保留所有权利。
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已成为一种成功且有前途的基因编辑技术。为了促进其有效应用,已经开发了各种计算工具。这些工具可以通过预测切割效率和特异性并排除不良靶标来帮助研究人员进行向导 RNA (gRNA) 设计过程。然而,虽然有许多工具可用,但对其应用场景和性能基准的评估却有限。此外,最近已经探索了用于 gRNA 效率预测的新深度学习工具,但尚未进行系统评估。在这里,我们讨论了与靶标活性问题有关的方法,主要关注它们利用的特征和计算方法。此外,我们在独立数据集上评估了这些工具并给出了一些使用建议。最后,我们总结了 CRISPR-Cas9 向导设计未来方向的一些挑战和观点。
收到日期:2022 年 4 月 14 日;修订日期:2022 年 5 月 31 日;接受日期:2022 年 5 月 31 日,出版日期:2022 年 5 月 31 日 DOI:10.6026/97320630018471 出版伦理声明:作者声明他们遵守 COPE 出版伦理指南,如 https://publicationethics.org/ 其他地方所述。作者还承诺,他们与任何其他第三方(政府或非政府机构)无关联,且与本出版物有任何形式的不道德问题有关。作者还声明,他们没有隐瞒有关本文的任何误导出版商的信息。 官方电子邮件声明:通讯作者声明,并非所有作者都可以获得其机构的终身官方电子邮件 许可声明:这是一篇开放获取文章,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的归功于。本文章根据 Creative Commons 署名许可条款发布。读者评论:BIOINFORMATION 上发表的文章开放供相关发表后评论和批评,这些评论和批评将立即发布,并附有原始文章的链接,无需支付开放获取费用。评论应简洁、连贯且具有批判性,字数不得超过 1000 字。
糖原储存疾病IA型(GSDIA)是由G6PC基因突变引起的常染色体隐性疾病,它破坏了葡萄糖稳态中的关键酶G6Pase 1。GSDIA患者患有低血糖,肝脏和肾脏的糖原和脂肪的积累,导致肝肿大和肾肿大。无法治愈。急性致命的低血糖,但肾脏疾病和肝细胞癌的长期并发症并未解决。与GSDIA相关的两个最普遍的G6PC突变是R83C和Q347X,均包含单个G> A的过渡突变。腺嘌呤碱基编辑器(ABES)可以使用基因组DNA中A•T到G•C的编程转换,并且原理可以用来精确纠正这些突变。在这里,我们设计了新颖的腺嘌呤基础编辑器(ABE)变体,以验证GSD1A的临床模型。
摘要:化脓性链球菌 Cas9 蛋白 (SpCas9) 是微生物中基于 CRISPR 的免疫系统的一个组成部分,已广泛用于基因组编辑。该核酸酶与向导 RNA (gRNA) 形成核糖核蛋白 (RNP) 复合物,从而诱导 Cas9 结构变化并触发其切割活性。在这里,电子圆二色性 (ECD) 光谱用于确认 RNP 的形成并确定其各个组成部分。ECD 光谱具有区分 Cas9 和 gRNA 的特征,前者显示出负/正谱,最大值位于 221、209 和 196 nm,而后者显示出正/负/正/负模式,条带分别位于 266、242、222 和 209 nm。首次展示了 gRNA:Cas9 RNP 复合物的实验 ECD 光谱。它表现出双标记正/负 ECD 偶联,最大值位于 273 和 235 nm,并且与每个 RNP 成分的单独光谱有显著不同。此外,Cas9 蛋白和 RNP 复合物在 ECD 测量后仍保留生物活性,并且它们能够在体外结合和裂解 DNA。因此,我们得出结论,ECD 光谱可被视为一种快速且无损的方法,用于监测 Cas9 蛋白因 Cas9 和 gRNA 相互作用而发生的构象变化,以及鉴定 gRNA:Cas9 RNP 复合物。