增材制造 (AM) 具有节省材料、大规模定制和小批量生产定制产品的优势,是一种强大且很有前途的制造技术。然而,目前 3D 打印过程缺乏质量管理,这是采用这种先进技术的主要障碍。3D 打印部件的几何不准确性是 AM 的主要质量问题之一,特别是当最终产品对其几何精度有较高要求时。在本研究中,使用激光线扫描仪开发了一种在直接能量沉积 (DED) 过程中进行连续监控的在线几何质量管理方法。我们提出的方法包括:(1)多层单道部件的实时逐道扫描,(2)打印过程中多层单道部件的在线几何提取,以及(3)在线绘制和比较设计模型和建造模型。
微血管是支持异质脑区神经元活动的供应网络的基础。毛细血管网络的连接性、密度和方向的共同点和异质点是什么?为了解决这个问题,我们以亚微米分辨率对整个成年小鼠脑中的微血管连接组进行了成像、重建和分析。图形分析揭示了整个大脑的共同网络拓扑结构,这导致了对血管稀疏的共同结构稳健性。基于解剖学精确重建的几何分析揭示了一种将长度密度(即每单位体积的血管长度)与组织到血管距离联系起来的缩放定律。然后,我们推导出一个公式,将代谢的区域差异与长度密度的差异联系起来,并进一步预测整个大脑的最大组织氧张力的共同值。最后,毛细血管的方向是弱各向异性的,除了一些强烈各向异性的区域;这种变化会影响 fMRI 数据的解释。
1 mfa47@cam.ac.uk, 2 ib340@cam.ac.uk 摘要 利用数字孪生概念,即现有铁路基础设施的物理资产虚拟副本,有可能彻底改变该领域的资产管理。但是,只有存在能够经济高效地生成铁路资产数字孪生的方法,这种利用才有可能。此“孪生”过程的第一步是捕获资产的原始几何形状并将其转换为适合进一步丰富设计、施工、运营和维护数据的高级几何形状。本文研究了第一步孪生的最新进展,即生成现有铁路基础设施的几何精确模型,重点关注轨道资产。本文首先定义数字孪生,然后解释真实虚拟同步的好处以及充分利用数字孪生的挑战。随后的部分提供了纵向文献,表明当前的研究对不同的铁路几何形状、邻域结构、扫描几何形状和输入数据强度很敏感。这些因素使得为数字孪生设计的方法对于包含不同水平和垂直高度的任何轨道结构都无效。这种差异相当常见;因此,我们得出结论,自动生成轨道结构几何数字孪生的问题尚未解决。
具有 3-D 双曲空间 H 3 。当 h eff = nh 0 时,任何携带暗物质的系统的磁体 (MB) 都提供了任何系统的表示(反之亦然)。MB 能否提供这种表示,作为因果菱形 (cd) 的 3-D 双曲面的镶嵌,定义为 M 4 的未来和过去定向光锥的交点?由 SL (2, Z) 的子群或其用代数整数替换 Z 的泛化标记的镶嵌点将由其统计特性决定。H 3 处神经元磁像的位置将定义 H 3 的镶嵌。镶嵌可以映射到庞加莱盘的模拟 - 庞加莱球 - 表示为未来光锥的 t = T 快照(t 是线性闵可夫斯基时间)。t = T 之后,神经元系统的大小不会改变。镶嵌可以将认知表征定义为一组离散的时空点,其坐标为可分配给表示 MB 的时空表面的有理数的某种扩展。有人可能会认为 MB 具有更自然的圆柱对称性而不是球对称性,因此也可以考虑在 E 1 × H 2 处使用圆柱表示
摘要 离散集上的量子几何意味着有向图,其权重与定义量子度量的每个箭头相关联。然而,这些“格间距”权重不必与箭头的方向无关。我们利用这种更大的自由度,对以转移概率为箭头权重的离散马尔可夫过程给出量子几何解释,即对图拉普拉斯算子∆ θ 取扩散形式 ∂ + f = ( − ∆ θ + q − p ) f ,根据概率构建的势函数 q、p 以及时间方向的有限差分 ∂ + 。在这一新观点的启发下,我们引入一个“离散薛定谔过程”,即 ∂ + ψ = ı ( − ∆+ V ) ψ,其中拉普拉斯算子与双模连接相关联,使得离散演化是幺正的。我们明确地为 2 状态图解决了这个问题,找到了此类连接的 1 参数族和 f = | ψ | 2 的诱导“广义马尔可夫过程”,其中有一个由 ψ 构建的附加源电流。我们还提到了我们最近在场 F 2 = { 0 , 1 } 上以“数字”形式进行的逻辑量子几何研究,包括德摩根对偶及其可能的推广。
最近,人们对从信息几何的角度研究量子力学的兴趣日益浓厚,其中量子态由投影希尔伯特空间 (PHS) 中的点来描述。然而,高维度量的缺失限制了信息几何在多参数系统研究中的应用。在本文中,我们提出了一种使用量子 Fisher 信息 (QFI) 体积元素来度量 PHS 中量子态的本征密度 (IDQS)。从理论上讲,IDQS 是一种定义一类量子态 (过) 完备关系的度量。作为一种应用,IDQS 用于研究量子测量和多参数估计。我们发现,一组有效估计量的可区分状态 (DDS) 密度由经典 Fisher 信息的不变体积元素来衡量,它是 QFI 的经典对应物,并作为统计流形的度量。通过行列式量子 Cramér-Rao 不等式研究了通过量子测量推断 IDQS 的能力。结果,我们发现在测量中 IDQS 和最大 DDS 之间存在差距。该差距与不确定度关系密切相关。以具有两个参数的三级系统为例,我们发现 Berry 曲率表征了 IDQS 和最大可达到 DDS 之间的平方差距。具体到顶点测量,平方差距与 Berry 曲率的平方成正比。
在两个平行板之间NS脉冲分解期间的抽象电离波发育中,通过PS电场诱导的第二次谐波(EFISH)生成和动力学建模研究了介电覆盖的电极。结果表明在放电间隙中形成了两个定义明确的电离波,这需要相对较高的初始电子密度。第一个,阳极定向的波是通过施加的电压脉冲“扫地”初始电子产生的。第二波源于阴极和第一波前部之间,由于该区域的场增强,产生了两个波前方,朝相反的方向传播并在等离子体发射图像中观察到。仅通过efish测量值检测到第二波的阳极定向前部,这很可能是由于阴极定向前部靠近壁。测量和建模预测都表现出由第二波的阳极定向前面引起的间隙中心的瞬态电场。在第一个波和第二波后面形成的等离子体域之间的边界,在等离子体发射图像中观察到,通过EFISH测量值检测到,并通过建模计算进行了预测。模型在放电脉冲结束时预测的电子密度和耦合的能量分布几乎是统一的,除了在阴极 - 粘合壁附近,在该壁附近,该模型的适用性尚不确定,并且无法访问Efish测量值。
具有特定位置化学成分的功能梯度材料 (FGM) 通常通过定向能量沉积 (DED) 制造。尽管之前的工作制造了一种成分在铁素体和奥氏体合金之间变化的 FGM,但是由于成分变化导致沉积物形状发生变化,因此出现了困难。文献中的 FGM 也存在此问题;然而,与其他情况不同,这两种合金在整个构建过程中的热物理性质相似。在这里,我们研究了在通过激光 DED 制造 FGM 过程中化学成分和表面活性元素对沉积物几何形状的作用。使用经过充分测试的三维瞬态数值传热和流体流动模型和热力学计算的结果,分析了相关 FGM 成分的单轨实验。实验表明,在恒定的激光功率和扫描速度下,沉积物形状随成分而变化。热力学分析表明,熔合区中氧的溶解度对于用于 FGM 的每种成分都存在显著差异。数值建模表明,熔合区中溶解氧引起的 Marangoni 对流引起的流体流动变化是实验中观察到的沉积物形状变化的主要原因。由于氧气可以通过原料以及周围大气进入熔合区,这些发现阐明了 FGM DED 制造过程中以前未考虑的工艺控制方面。
熔化潜热,ΔHJ kg -1 2.62x10 5 2.58x10 5 2.51x10 5 2.56x10 5 2.57x10 5 2.56x10 5 2.59x10 5 液体粘度,μ kg m -1 s -1 6.67x10 -3 6.81x10 -3 6.89x10 -3 6.97x10 -3 7.03x10 -3 7.09x10 -3 7.21x10 -3 热膨胀系数,αK -1 1.78x10 -6 1.78x10 -6 1.96x10 -6 2.16x10 -6 2.31x10 -6 2.26x10 -6 2.22x10 -6 1064nm波长的吸收系数,η - 0.351 0.344 0.337 0.329 0.322 0.315 0.308