我们的 Hb G-Makassar 直接编辑策略证明了电穿孔后 CD34 + 细胞单个碱基的高编辑效率,这种效率在杂合和纯合镰状细胞的红细胞分化过程中得以维持。此外,我们还能够通过一种新型 UPLC 方法和 LC-MS 解析并确认 Hb G-Makassar b 珠蛋白变体的安装。我们证明,在高编辑效率下,可以实现高双等位基因编辑,将 HbS 珠蛋白水平降低至 <15%,并减少暴露于缺氧条件下的编辑细胞的体外镰状化。结合自体干细胞移植,将致病镰状细胞突变直接编辑为自然发生且无症状的 Hb G-Makassar 是一种有前途的镰状细胞患者新治疗模式。
整个生命过程中的组织氧合取决于血红蛋白 (Hb) 的活性,血红蛋白是一种血红素蛋白,它结合肺部的氧气并确保氧气输送到全身。Hb 由四个单体组成,由八个不同的基因编码,这些基因的表达在发育过程中受到严格调控,导致每个发育阶段形成不同的血红蛋白四聚体。改变血红蛋白结构或其受调控表达的突变会导致一大群疾病,通常称为血红蛋白病,是全球最常见的遗传缺陷之一。过去几十年来,前所未有的努力部分揭示了控制整个发育过程中珠蛋白基因表达的复杂机制。此外,全基因组关联研究揭示了能够改善严重血红蛋白病临床表现的保护性遗传特征。这些知识推动了对创新治疗方法的探索,旨在修改受影响细胞的基因组或表观基因组,以恢复血红蛋白功能或模仿保护性特征的影响。这里我们描述了控制发育过程中不同珠蛋白基因表达转换的关键步骤,并强调了为治疗目的改变珠蛋白调控的最新努力。
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和
摘要:抗癌药物光神霉素 (MTH) 已被提议用于药物再利用,因为人们发现它是 β-地中海贫血患者的红系前体细胞 (ErPC) 中胎儿血红蛋白 (HbF) 产生的有效诱导剂。在这方面,先前发表的研究表明,MTH 在诱导红系细胞中 γ-珠蛋白基因表达增加方面非常活跃。这具有临床意义,因为已经确定 HbF 诱导是治疗 β-地中海贫血和改善镰状细胞病 (SCD) 临床参数的有效方法。因此,识别 MTH 生化/分子靶点具有重要意义。这项研究受到最近有力证据的启发,这些证据表明,γ-珠蛋白基因的表达在成人红系细胞中受不同转录抑制因子的控制,包括 Oct4、MYB、BCL11A、Sp1、KLF3 等。其中,BCL11A 非常重要。本文报告了证据表明,在 MTH 介导的红细胞分化过程中,BCL11A 基因表达和生物学功能发生了改变。我们的研究表明,MTH 的作用机制之一是下调 BCL11A 基因的转录,而第二种作用机制是抑制 BCL11A 复合物与 γ 珠蛋白基因启动子的特定序列之间的分子相互作用。
l i n g l i n *,l a u a u r e n yo u n g *,j e n n y o l i n s *,j e r e m y d e c k e r,a l e x a n d e r j。l i q u o r i,s。yi n g y i n g z h a n g,h a i h u a c h u,d a i s y l a m,c o n r a d r a d r i n a l d i d i,a d r i a n d r i a n P. r y b y b a k,m i c h a e l s。p a c k e r,n i c o l e m。g a u d e l l i,l u i s b a r r e r a r a r a r a r a r a r a r a r y m a r a r s h a l l l l l l l,m a t t h t h a l l l l,m a t t h u m e s,b o b o b g a n t z e r,b r i a n c a f f e f f e f f e f e r t y, N M O H A N S I N G H,A D A M J。h a r t i g a n,g i u s e p p e c i a r a m e l l a
镰状细胞疾病(SCD)是最常见的严重单基因疾病,每年在全球范围内有300,000个出生。SCD是一种常染色体隐性疾病,是由-珠蛋白基因的第六个点突变(HBB)引起的。ex vivo -Globin基因校正在自体患者衍生的造血干细胞和祖细胞(HSPC)中可能有可能为SCD提供治疗性治疗。我们以前开发了一种CRISPR-CAS9基因靶向策略,该策略使用具有化学改良的指南RNA预处理的高保真性CAS9诱导重组腺相关病毒血清型6(RAAV6) - 介导的HBB基因校正HSPCS中的SCD引起的突变。在这里,我们证明了来自健康和SCD患者供体(GCHBB-SCD)的Plerixafor-Mobilized CD34 +细胞中HBB基因校正的临床前可行性和毒理学。我们在临床规模的GCHBB-SCD制造中最多可实现60%的HBB等位基因校正。移植到免疫缺陷型NSG小鼠中后,通过多核植入实现20%的基因校正。长期安全性,肿瘤性和毒理学研究表明,没有来自植入的GCHBB-SCD药物的造血,遗传毒性或肿瘤性异常的证据。一起,这些临床前数据支持该基因校正策略的安全性,功效和再现性,以启动SCD患者的1/2期临床试验。
镰状细胞病 (SCD) 是由成人血红蛋白 (Hb) 链中的单个氨基酸变化引起的,这种变化会导致 Hb 聚合和红细胞 (RBC) 镰状化。导致胎儿 珠蛋白在成年期产生的突变共同遗传,胎儿 Hb 的遗传性持续性 (HPFH) 降低了 SCD 的临床严重程度。HBG 珠蛋白启动子中的 HPFH 突变会破坏阻遏物 BCL11A 和 LRF 的结合位点。我们使用 CRISPR-Cas9 通过产生插入和缺失来模拟 HBG 启动子中的 HPFH 突变,从而导致已知和推定的阻遏物结合位点的破坏。编辑患者来源的造血干/祖细胞 (HSPC) 中的 LRF 结合位点可导致 珠蛋白去阻遏和镰状表型的纠正。用靶向 LRF 结合位点的 gRNA 处理的 HSPC 异种移植在重新植入 HSPC 方面表现出较高的编辑效率。这项研究确定了 LRF 结合位点是基因组编辑治疗 SCD 的有力靶点。
Adrian P. Rybak、Elsie Zahr Akrawi、Conrad Rinaldi、Scott J. Haskett、Ling Lin、Jeffrey Marshall、Alexander Liquori、Luis Barrera、Jenny Olins、S. Haihua Chu、Jeremy Decker、Minerva Sanchez、Yeh-Chuin Poh、Matt Humes、Michael S. Packer、Nicole M. Gaudelli、Sarah Smith、Adam Hartigan 和 Giuseppe Ciaramella。
所采用的方法是文献综述。研究来源包括来自多个数据库的相关期刊,包括 Google Scholar、PubMed、Science Direct 和 Journal Molecular Biology。作者使用关键词和同义词搜索 CRISPR Cas9 或基因编辑或基因组编辑或成簇的规律散在的短回文重复序列- CRISPR 相关和 SCA 或镰状细胞性贫血和 TDT 或输血依赖性 β 地中海贫血和 BCL11A 基因或 B 细胞淋巴瘤/白血病 11A 和 HBB 基因或 HBB。搜索仅限于 2012 年至 2022 年的出版物,以确保使用的文章是最新的。还应用了语言限制以将搜索限制为仅以英文发表的文章。所有相关文章都经过筛选和分析,根据质量和与文献综述主题、问题和目标的相关性将其纳入或排除在文献综述之外。每篇文章的标题和摘要都同时根据研究问题进行量身定制。如果标题和摘要相符,则检查文章全文的可用性。最后,研究人员阅读整篇文章,看看它是否与主题相关且有价值。
得到美国国立卫生研究院(NIH)/国家心脏,肺部和血液研究所的支持。M.P.G. 获得了贝克尔家庭基金会和Actelion的资金,并参加了联合治疗,复合体和Actelion的临床试验。 B.B.G. 从NIH获得资金(R01HL135872)。 M.T.G. 获得NIH的资金(5R01HL098032,2R01HL125886,5P01HL103455,5T32HL110849和UG3HL143192),burroughs wellcome Foundic Foundation,Globin Solutions,Globin Solutions,Inc. festry for Transfiuse,in transfimia for Transfimia for Transfirial and thrimia。 NIH/NHLBI R13-HL147557-01和医学教育收入从:Actelion Pharmaceuticals US,Boehringer-ingelheim Pharmaceuticals,boehringer-ingelheim Pharmaceuticals,Pififilesictical Corporation Comporiation。 我们还感谢心血管医学研究和教育基金,国家肺气肿基金会,国家肺教育计划,团队现象希望,弗朗西斯家庭基金会和阿斯彭肺会议基金的慷慨支持。M.P.G.获得了贝克尔家庭基金会和Actelion的资金,并参加了联合治疗,复合体和Actelion的临床试验。B.B.G. 从NIH获得资金(R01HL135872)。 M.T.G. 获得NIH的资金(5R01HL098032,2R01HL125886,5P01HL103455,5T32HL110849和UG3HL143192),burroughs wellcome Foundic Foundation,Globin Solutions,Globin Solutions,Inc. festry for Transfiuse,in transfimia for Transfimia for Transfirial and thrimia。 NIH/NHLBI R13-HL147557-01和医学教育收入从:Actelion Pharmaceuticals US,Boehringer-ingelheim Pharmaceuticals,boehringer-ingelheim Pharmaceuticals,Pififilesictical Corporation Comporiation。 我们还感谢心血管医学研究和教育基金,国家肺气肿基金会,国家肺教育计划,团队现象希望,弗朗西斯家庭基金会和阿斯彭肺会议基金的慷慨支持。B.B.G.从NIH获得资金(R01HL135872)。M.T.G. 获得NIH的资金(5R01HL098032,2R01HL125886,5P01HL103455,5T32HL110849和UG3HL143192),burroughs wellcome Foundic Foundation,Globin Solutions,Globin Solutions,Inc. festry for Transfiuse,in transfimia for Transfimia for Transfirial and thrimia。 NIH/NHLBI R13-HL147557-01和医学教育收入从:Actelion Pharmaceuticals US,Boehringer-ingelheim Pharmaceuticals,boehringer-ingelheim Pharmaceuticals,Pififilesictical Corporation Comporiation。 我们还感谢心血管医学研究和教育基金,国家肺气肿基金会,国家肺教育计划,团队现象希望,弗朗西斯家庭基金会和阿斯彭肺会议基金的慷慨支持。M.T.G.获得NIH的资金(5R01HL098032,2R01HL125886,5P01HL103455,5T32HL110849和UG3HL143192),burroughs wellcome Foundic Foundation,Globin Solutions,Globin Solutions,Inc. festry for Transfiuse,in transfimia for Transfimia for Transfirial and thrimia。NIH/NHLBI R13-HL147557-01和医学教育收入从:Actelion Pharmaceuticals US,Boehringer-ingelheim Pharmaceuticals,boehringer-ingelheim Pharmaceuticals,Pififilesictical Corporation Comporiation。我们还感谢心血管医学研究和教育基金,国家肺气肿基金会,国家肺教育计划,团队现象希望,弗朗西斯家庭基金会和阿斯彭肺会议基金的慷慨支持。