每个人都必须出示会员卡或带照片的身份证才能进入设施。 我们以礼相待,尊重他人在设施共享区域的权利。 我们使用适当的语言以避免冒犯他人,并且不穿印有亵渎或攻击性语言或图片的衣服。 在使用设备和健身课时,请限制使用手机。 严禁在更衣室使用相机。 我们使用适合性别的更衣室。 在 YMCA 场所内,我们不吸烟或使用任何酒精或烟草产品。 我们尊重 YMCA 及其所有成员的财产。 我们尊重行动不便的个人,不会将车停在标有残疾人标志的空间内。 绝不容忍身体暴力或破坏性行为,否则将被停职。 请尊重设施的开放时间。我们要求您在规定的设施关闭时间之前完成锻炼、桑拿、蒸汽或淋浴。 宠物不得进入设施(服务犬除外)。 我们禁止将枪支带入设施,执法人员除外。 禁止吸电子烟 禁止在基督教青年会设施内使用带轮鞋、悬浮滑板或娱乐设备。
稳定无人驾驶飞行器 UAV 的天花板是确保其在自主模式下安全运行的关键问题。对于垂直起降的无人机,它允许稳定悬停并系统地执行委托给它的进一步任务以及自主起飞和降落。同时,确保无人机的稳定悬停是一件困难的事情,因为从控制理论的角度来看,这个过程具有非线性特征。增加问题复杂性的另一个因素是,在大多数实际解决方案中,由于成本低廉,该类飞机的天花板稳定是借助超声波传感器进行的。反过来,这些传感器提供的测量分辨率相对较低(约 1 厘米),采样频率为 20 Hz,操作范围从顶部到 - 约 7 米 - 以及从底部到 - 约 0.35 米。因此,不可能准确地确定天花板,更不用说由于分辨率低 - 爬升速度。确定爬升速度的问题似乎是关键,这主要是由于结构解决方案的关键,关键重要性在于PID控制器(比例积分微分)调节范围内控制误差的推导准确性[1],[2],[3]。
摘要 — 水下航行器最近在生态监测中变得越来越有用,这在很大程度上要归功于现代计算机提供的先进处理能力。大多数水下航行器都是鱼雷形的,并且是非完整控制的,这使它们效率高,但缺乏精确的机动性。当需要更精确的导航时,会使用一些立方体形状的航行器;但是,由于航行器具有很大的阻力,它们无法利用滑行运动和流体动力升力。Stingray 自主水下航行器 (AUV) 是一款紧凑、轻便的 AUV,具有独特的设计实现。Stingray 的船体是一个碳纤维外壳,具有仿生设计,让人想起了它居住在海洋中的名字。这种流线型轮廓提供非常低的阻力,使航行器能够在水中滑行。Stingray 还使用独特的推进系统,将机翼和尾部上的三个垂直推进器与安装在下方的两个 Voith-Schneider 螺旋桨相结合,用于滚动和俯仰,用于偏航和喘振。此外,这两个螺旋桨还提供了扫射能力,使飞行器能够以六个自由度移动。这使 Stingray 能够轻松地以低速进行机动并以类似直升机的方式悬停,同时还能利用机翼产生的升力像固定翼飞机一样滑行。
摘要:本文研究了不同噪声水平和不同照明水平对飞行机器人语音和手势控制命令界面的影响。目的是通过研究各个组件的局限性和使用可行性来确定语音和视觉手势多模态组合在人类有氧机器人交互中的实际适用性。为了确定这一点,分别使用 CMU(卡内基梅隆大学)sphinx 和 OpenCV(开源计算机视觉)库开发了一个自定义多模态语音和视觉手势界面。设计了一项实验研究来测量语音和手势两个主要组成部分各自的影响,并招募了 37 名参与者参与实验。环境噪声水平从 55 dB 到 85 dB 不等。环境照明水平从 10 勒克斯到 1400 勒克斯不等,在不同的照明色温混合下,黄色(3500 K)和白色(5500 K),以及用于捕捉手指手势的不同背景。实验结果包括大约 3108 个语音话语和 999 个手势质量观察,并进行了介绍和讨论。观察到语音识别准确率/成功率随着噪声水平的上升而下降,75 dB 噪声水平是航空机器人的实际应用极限,因为语音控制交互由于识别率低而变得非常不可靠。结论是,多词语音命令被认为比单词语音命令更可靠和有效。此外,由于其清晰度,一些语音命令词(例如,land)在较高噪声水平下比其他命令词(例如,hover)更耐噪。从手势照明实验的结果来看,照明条件和环境背景对手势识别质量的影响几乎微不足道,不到 0.5%。这意味着其他因素,例如手势捕获系统设计和技术(相机和计算机硬件)、捕获的手势类型(上身、全身、手、手指或面部手势)以及图像处理技术(手势分类算法),在开发成功的手势识别系统中更为重要。根据从这些发现得出的结论,提出了一些进一步的研究,包括使用替代的 ASR(自动语音识别)语音模型和开发更强大的手势识别算法。
摘要 — 水下航行器最近在生态监测中变得越来越有用,这在很大程度上要归功于现代计算机所具备的先进处理能力。大多数水下航行器都是鱼雷形的,并且是非完整控制的,这使它们效率高,但缺乏精确的机动性。当需要更精确的导航时,会使用一些立方体形状的航行器;但是,由于航行器具有很大的阻力,因此它们无法利用滑行运动和流体动力升力。Stingray 自主水下航行器 (AUV) 是一款紧凑、轻便的 AUV,具有独特的设计实现。Stingray 的船体是一个碳纤维外壳,其仿生设计让人想起了它生活在海洋中的名字。这种流线型轮廓可提供非常低的阻力,并允许航行器在水中滑行。Stingray 还采用了独特的推进系统,将机翼和尾部上的三个垂直推进器与安装在下方的两个 Voith-Schneider 螺旋桨相结合,用于实现滚转和俯仰。此外,这两个螺旋桨还提供了扫射能力,使飞行器能够以六个自由度移动。这使得 Stingray 能够轻松地以低速操纵并以类似于直升机的方式悬停,同时还能够利用机翼产生的升力像固定翼飞机一样滑翔。
地方性伯基特淋巴瘤 (BL) 是撒哈拉以南非洲的一种儿童癌症,其特征是爱泼斯坦-巴尔病毒和疟疾相关的异常 B 细胞活化和 MYC 染色体易位。常规化疗后的存活率徘徊在 50% 左右;因此,需要临床相关模型来测试其他疗法。因此,我们建立了五种患者来源的 BL 肿瘤细胞系和相应的 NSG-BL 化身小鼠模型。转录组学证实,我们的 BL 系从患者肿瘤到 NSG-BL 肿瘤都保持了保真度。然而,我们发现 NSG-BL 化身之间的肿瘤生长和存活率以及爱泼斯坦-巴尔病毒蛋白表达模式存在显著差异。我们测试了利妥昔单抗的反应性,发现一种 NSG-BL 模型表现出直接敏感性,其特点是凋亡基因表达与未折叠蛋白反应和 mTOR 促生存途径相平衡。在利妥昔单抗无反应的肿瘤中,我们观察到 IFN-α 特征,这由 IRF7 和 ISG15 的表达证实。我们的结果表明患者间肿瘤存在显著的差异和异质性,并且当代患者衍生的 BL 细胞系和 NSG-BL 化身是指导新治疗策略和改善这些儿童预后的可行工具。
降低各级风险以保持战斗力。具体来说,我们正在应用现代技术来攻击电压下降。去年,电压下降导致陆军 39.1%(11 起)的 A 级航空事故。在伊拉克自由行动 (OIF) 中,75% 的 A 级事故归因于电压下降情况,导致一人死亡。既然我们无法改变环境,我们就必须改变机组人员处理环境的能力。这是陆军走在前列的三项举措。先进的模拟器 大多数部队缺乏资源定期将飞机带到沙漠环境中;因此,我们的模拟器的有效性是一个极其重要的因素。我们目前的模拟器缺乏适当的感觉和视觉提示来建立肌肉记忆并提高飞行员的信心和控制力。下一代模拟器能够提供出色的训练。我最近参观了一个先进的模拟器综合体,它可以在 30 小时内开发一个国家数据库。地形复制了视觉提示,例如悬停时草的移动和低速时电压降低的形成。我认为未来的模拟器允许部队在主站执行集体任务,为他们准备任何可能的责任区 (AOR)。
摘要:脑肿瘤是儿科和成人医疗保健领域的重大挑战,占原发性中枢神经系统 (CNS) 肿瘤的大多数,每年影响约 11,700 人。在 5 年内,被诊断患有癌性脑肿瘤或 CNS 肿瘤的男性存活率徘徊在 34%,女性存活率徘徊在 36%。这些肿瘤多种多样,从良性到恶性,包括垂体瘤等。有效的治疗计划和准确的诊断对于改善患者预后至关重要。磁共振成像 (MRI) 是肿瘤检测的基石,可产生大量图像数据供放射科医生解释。然而,由于脑肿瘤特征固有的复杂性,手动检查这些图像很容易出错。由机器学习 (ML) 和人工智能 (AI) 驱动的自动分类技术提供了一种有希望的途径,与手动方法相比,它始终表现出更高的准确性。因此,提出一个集成深度学习技术(如人工神经网络 (ANN) 和卷积神经网络 (CNN) 算法)和迁移学习 (TL) 的系统,可以彻底改变全球脑肿瘤检测和分类。这种创新方法将为医疗专业人员提供宝贵的支持,提高诊断准确性,并最终改善患者对抗脑肿瘤的结果。关键词:FCM、CNN、分割、SVM、医学图像
摘要:本文提出了一种共轴旋翼飞行器的滑模PID控制算法,之后采用Adams/MATLAB仿真与试验进行验证,结果表明该控制方法能够取得满意的效果。首先,当考虑上下旋翼间的气动干扰时,很难建立准确的数学模型,利用叶素理论和动态来流模型计算上下旋翼间的气动干扰和桨叶的挥动运动,其余不能准确建模的部分通过控制算法进行补偿。其次,将滑模控制算法与PID控制算法相结合对飞行器的姿态进行控制,其中,采用PID控制算法建立姿态与位置之间的关系,使飞行器能够更加平稳地飞行和悬停。第三,将飞行器的三维模型导入Adams,建立动力学仿真模型。然后在Simulink中建立控制器,并将控制器与动态仿真模型进行联合仿真,并通过仿真将滑模PID控制算法与传统PID控制算法进行比较,最后通过实验验证了滑模PID控制算法与传统PID控制算法的有效性。
简介 ................................................................................ 4 背景/历史 .............................................................................. 6 一般特性 .............................................................................. 8 外部尺寸 .............................................................................. 10 设计特点 .............................................................................. 12 机身 ...................................................................................... 12 模块化结构 ...................................................................... 13 起落架 ...................................................................................... 14 标准滑橇起落架 ............................................................. 14 可选轮式起落架 ............................................................. 15 诺斯罗普·格鲁曼综合驾驶舱和航空电子设备 ............................................. 16 AH-1Z 综合驾驶舱 ............................................................. 18 多功能和双功能显示器 ............................................................. 20 飞行控制 ............................................................................. 26 自动飞行控制系统 ............................................................. 26 洛克希德·马丁目标瞄准系统 (TSS) ...................................................... 28 TSS 传感器 ............................................................................. 30 TSS 性能 ............................................................................. 31 泰雷兹头盔瞄准器和显示系统 ............................................................. 32 武器系统 ............................................................................. 34 火箭队......