关键词:高电子迁移率晶体管 (HEMT)、磷化铟 (InP)、高频、制造摘要自 DARPA 太赫兹电子项目结束以来,诺斯罗普·格鲁曼公司 (NG) 一直致力于将工艺过渡到 100 毫米,并使先进的 InP HEMT 技术适用于高可靠性 A 类空间应用。NG 的 100 nm InP HEMT 节点目前处于制造就绪水平 (MRL) 9,而砷化铟复合通道 (IACC) 节点处于 MRL 3/4。为了提高 IACC 的 MRL,NG 一直致力于将工艺从材料生长转移到晶圆加工到 100 毫米生产线,并利用 100 nm InP HEMT 工艺的制造和认证专业知识。在整个工艺转移和成熟过程中,NG 克服了工艺重现性、产量和吞吐量方面的挑战,并进行了广泛的可靠性测试。引言在过去二十年中,在美国国防高级研究计划局、美国宇航局/喷气推进实验室和三军的资助下,诺斯罗普·格鲁曼公司 (NG) 通过积极缩小 InP HEMT 尺寸并使用超高迁移率砷化铟复合通道 (IACC) HEMT 结构,展示了高达太赫兹的高电子迁移率晶体管 (HEMT) [1,2] 和单片微波集成电路 (MMIC) [3-6],如表 1 所示。InP 和 IACC HEMT 的关键制造步骤是分子束外延 (MBE)、电子束光刻 (EBL) 栅极、基板通孔 (TSV) 以及缩放互连和钝化工艺。材料生长和制造工艺最初是在 NG 的 75 毫米生产线上开发的。NG 致力于技术成熟工作,以缩小制造差距,以提高 IACC 节点的 MRL [7]。工艺概述 InP 和 IACC HEMT 晶圆采用分子束外延法在半绝缘 InP 衬底上生长。IACC 外延剖面具有复合通道,该通道由夹在两个晶格匹配的 In x Ga 1-x As 层之间的 InAs 层组成 [2]。高电子迁移率 InAs 通道是高频低直流功率操作的关键推动因素。肖特基势垒层和重掺杂帽经过优化,可实现低
Ag silver Al aluminium APS Announced Pledges Scenario As arsenic a-Si amorphous silicon ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer Au gold B boron B20 Business 20 Ba barium Be beryllium Bi bismuth C carbon CAIT Climate Analysis Indicator Tool CdTe cadmium-telluride Ce cerium CIGS铜 - 印度 - 二苯胺 - 二硫化物co钴二氧化碳二氧化碳COP会议CR铬 erbium Eu europium EV electric vehicles EW electrowinning F fluorine FC Fuel cell Fe iron Ga gallium GATT General Agreement on Tariffs and Trade Gd gadolinium Ge germanium GHG greenhouse gas GIS Geographical Information System Gt giga tonne GW giga watts Hf hafnium HLT hard-rock lithium Ho holmium HPAL high-pressure acid leaching IEA International Energy Agency In indium IPCC政府间气候变化小组IR IRIDIUM IRIDIUM IRENA RENEWABLE能源局IRTC国际材料国际圆桌会议批判性KT KILO TONNES
自 1993 年 Shuji Nakamura 制成第一只 GaN 基蓝光发光二极管 (LED) 以来 [1],基于 III 族氮化物材料的 LED 发展迅速并得到了广泛的应用。然而,导致绿光 LED 效率低下的“绿光隙”一直未能得到解决,而蓝光和红光 LED 却实现了较高的发光效率 [2,3]。造成上述问题的原因之一是 InxGa1-xN/GaN 多量子阱 (MQW) 中铟组分的增加,而这是为了使 InGaN 基 LED 能够发出更长的波长的光。由于 InGaN 与 GaN 之间的晶格常数和热膨胀系数不匹配 [4,5],以及 InN 在 GaN 中的低混溶性 [6],高铟组分 InGaN QW 的绿光 LED 会遭受晶体质量劣化。同时,还会产生大量的位错,它们充当非辐射复合中心[7],对发光是不利的。另一方面,有源区产生的光很难从高折射率半导体(n GaN = 2.5)逸出到空气中(n air = 1)。内部光的临界角(θ c )或逸出锥仅为~23.6°[θ c = sin −1(n air /n GaN )],超过此角度发射的光子会发生全内反射,因此只有一小部分光可以逸出到周围的空气中[8]。绿光是三原色之一,提高绿光LED的发光效率是实现高效率、高亮度RGB(红、绿、蓝)LED的关键。
镀仑及其合金在近年来引起了人们的关注。[1,2]尽管凝胶的熔点为29.8°C,但它可以与其他金属合金(例如impium(in)和TIN(SN)(SN)合成,以进一步降低其熔点。在过去的十年中,特定的焦点一直放在共晶的gal- lium im依(Egain; 75 wt%ga,25 wt%in;熔点:14.2°C)和galinstan(68.5 wt%ga,21 wt%,21 wt%,21 wt%in,10 wt%sn; 10 wt%sn;熔点:13.2°C)。[3]这些基于甘露的液体金属合金具有包括高电导率在内的金属的证明(约3.4×10 6 s m-1,比铜低约17倍),低粘度(大约是水的粘度的两倍),高表面张力(大约600-700-700-700 mn-m-nm-n m-nm-n m-nm-n m-n m-n m-n m-n m-n m-n m-n m-n m-n m-n ligible vapor and pa pa and pa pa and paepers),<<10 - <处理无需在烟雾罩中工作。[4] Gal-Instan和Egain在微电力机械系统和微富集学中引起了人们的关注,其应用,包括可拉伸的电子设备,[5,6]可重新配置的天线,[7,8]软机器人和可穿戴设备,[9-11]微流体的固定器,[9-11]微流体 - 液化剂,[12,14-14] [12,1,3] [12,-1--13]。液滴发生器。[15,16]由于固有的挑战,诸如将液体金属注入微通道内部,因此由于它们的高表面十足,液滴发生器允许可重复生成可配置尺寸的液滴的生成仍然具有挑战性。这样的液滴发生器将为执行器等应用的纳米和微螺旋铺平道路,[17,18]泵,[19,20]触觉设备,[21]
之前使用过的两种技术(铟箔活化 [2] 和 23SU 裂变计数器 [3])都被认为对将要使用的中子场不够敏感或不方便。诸如 3He 谱仪和充满氢的比例计数器等替代方案被认为对背景中子或伽马射线过于敏感。工作组提倡使用邦纳球探测器,并被第 iii 节选为所选能量区域最合适的转移探测器。一组三个直径不同、使用公共中心探测器的球体可用于先前的比较(见第 4 节)。比较涉及邦纳球的循环,以便参与者在其实验室常规使用的中子场中进行校准。
关键词:5G 网络、VLSI 设计、高频操作、电信技术、毫米波、太赫兹频谱、数据传输、节能处理、半导体材料、硅锗 (SiGe)、氮化镓 (GaN)、磷化铟 (InP)、器件架构、FinFET、纳米级晶体管、速度增强、效率提高、功耗、热管理、信号完整性、先进冷却技术、低功耗设计方法、纠错算法、人工智能 (AI)、机器学习 (ML)、优化、自适应性能、连接性、数据处理能力、下一代网络、尖端方法、技术挑战、设计解决方案、新颖的设备实施、未来电信进步。
•领导和指导图片工程团队。•光子组件(主动和被动)的建模,仿真,设计和布局以及硅光子学,磷化物,磷化二硅,氮化硅,二氧化硅等中的电路。•铸造厂和软件提供商接口。•对技术人员,实习生和/或其他熟练技术人员执行的技术任务的监督。•在准备客户和研发建议以及项目任务方面的协作。•客户接口:电视和会议,项目管理。•支持招募新员工。•在基础架构方面维持和确定需求。•计划和监视图片设计团队中的资源和活动。•有助于持续改进与团队相关的流程,例如工程和文档最佳实践和工具的使用。
高带gap(较短的波长)材料由III-V半导体组合形成,允许在紫外线范围内进行辐射排放。通过改变铝,粘液和凝胶的比率,可以获得特定的发射波长。UV LED进一步分类为UVA,UVB和UVC LED。在UV和UVA LED附近使用Ingan在活动区域中使用Ingan,并且主要在蓝宝石底物上生长。氮化铝含量是低于365 nm的波长的首选材料。对于发射较短的紫外线波长的设备,需要具有更大铝含量的组合物。蓝宝石底物含有氮化铝或氮化铝铝铝层,也用于提高较短波长的LED质量[4]。
利用三维受限磁控溅射源 (L-3DMS) 在低于 100 C 的温度下成功沉积了超薄锡掺杂结晶氧化铟 (ITO) 薄膜 (≤ 50 nm)。在低处理温度下沉积的超薄 ITO 薄膜的电阻率和迁移率分别约为 ∼ 5 × 10 − 4 · cm 和 > 30 cm 2 /Vs (厚度为 30 nm)。据信,利用 L-3DMS 沉积的超薄 ITO 薄膜的高质量与 L-3DMS 的高密度等离子体和低放电电压改善了 ITO 薄膜的结晶度和氧空位有关,这使得能够在低处理温度下形成晶体结构。关键词:透明导电氧化物 (TCO)、3-D 受限磁控溅射、ITO 薄膜、高等离子体密度、晶体结构、低温。