我们提出了一种新的形式主义和有效的计算框架,以研究第一原理的绝缘体和半导体中的自我捕获的激子(Stes)。使用多体伯特盐方程与扰动理论结合使用,我们能够在扰动方案中获得模式和动量分辨的激子耦合矩阵元素,并明确求解电子(孔)的真实空间定位,以及晶状体变形。此外,这种方法使我们能够计算Ste势能表面并评估Ste形成能量并变化。我们使用二维磁性半导体铬铬和宽间隙绝缘子Beo证明了我们的方法,后者具有深色激子,并预测其stokes spriances and Cooherent phonon的产生,我们希望我们能引发未来的实验,例如未来的光发光和瞬时吸收研究。
随着从化石燃料的能源生产到环境可持续的方法的过渡,已经出现了对安全有效的能源存储的强大需求。一种完善的方法是在充电电池中能量的电化学存储,尤其是基于锂的电池,彻底改变了各种电子设备的储能。[1,2]仅基于锂电池的电池就无法解决当今的储能问题,因为它们面临各种挑战,从有限的电池寿命[4]中的重要电池组件[3]到严重的安全问题。[5]为了抵制与锂电池相关的日益增长的资源短缺,并在可预见的未来提供了能力和环境可持续的能源存储,针对替代电池类型的研究工作大大增加了。[6-13]当前一代锂电池的替代方案包括其他
r TE n ( ω ) M eo,nm ( r , k 3 ) ⊗ M eo,nm ( r ′ , k 3 ) + r TM n ( ω ) Ne eo,nm ( r , k 3 ) ⊗ Ne eo,nm ( r ′ , k 3 )。
ada_lovelace_article =“”“”“奥古斯塔·阿达·金(Augusta Ada King),洛夫莱斯(NéeByron)伯爵夫人(NéeByron; 1815年12月10日至1852年11月27日)是英国数学家和作家...她是第一个认识到该机器超出纯计算的应用。艾达·拜伦(Ada Byron)是诗人拜伦勋爵(Lord Byron)和改革家拜伦(Lady Byron)的唯一合法孩子...“”
量子纳米结构在电子,光子学,材料,药物等方面提供了重要应用。为了精确设计和分析纳米结构和材料,始终需要对Schrӧdinger或Schrӧdinger样方程进行模拟。对于大纳米结构,这些特征值问题在计算上可能是密集的。一种有效的解决方案是通过正交分解(POD)的学习方法,以及Schrӧdinger方程的Galerkin投影。pod-galerkin将问题投射到降低的空间上,其POD基础代表由模拟中的第一个原理引导的电子波函数(WFS)。为了最大程度地减少训练工作并增强Pod-galerkin在较大结构中的鲁棒性,先前提出了量子元素方法(QEM),该方法将纳米结构划分为通用量子元素。较大的纳米结构可以通过受过训练的通用量子元素构造,每个元素用其POD-Galerkin模型表示。这项工作对QEM-Galerkin进行了多元素量子点(QD)结构的彻底研究,以进一步提高QEM-Galerkin的训练效率和仿真精度和效率。为了进一步提高计算速度,在QEM-Galerkin模拟中还检查了定期电势的POD和傅立叶基础。结果表明,考虑到效率和准确性,POD电位基础甚至在周期性潜力方面都优于傅立叶电位基础。总的来说,Qem-Galerkin在计算中提供了多个元素QD结构的直接数值模拟的2阶速度,并且在包含更多元素的结构中观察到了更多改进。
1 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China 2 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 3 Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface物理和物理系,福丹大学,上海,200433年,中国4物理学系和纳米科学与工程研究所,阿肯色大学,阿肯色大学,阿肯色州72701,美国5大学,美国5级大学,巴黎大学 - 萨克莱大学,中心,中心zjjiang@xjtu.edu.cn†charles.paillard@centralesupelec.fr Electro-Optic(EO)效应效果将光学常数的变化与低频电场有关。多亏了密度功能扰动理论的出现(DFPT),现在可以以AB-Initio方式计算大量三维(3D)材料的EO特性。然而,在大多数密度功能理论中使用周期性边界条件施加了使用大量真空包围的平板模拟二维(2D)材料。从此类计算中预测的EO系数(即使不正确)可能会严重偏离2D材料的实际EO特性。目前的工作讨论了问题,并介绍了恢复关系,从而恢复了真正的EO属性。I.简介
最初发表于以下网址:毛罗(Schilling),毛罗(Mauro); Cunha,Richard A;桑德拉(2020)卢伯(Luber)。放大O – O键形成 - 采用增强的采样技术的基本分子动力学研究。化学理论与计算杂志,16(4):2436-2449。doi:https://doi.org/10.1021/acs.jctc.9b01207
...................................................................................................................................................... 23
这项研究利用密度功能理论(DFT)来探索BN掺杂的准四膜堆积(QTP)C 60 C6 60聚合物纳米片的结构稳定性,电子特性,吸附行为,光学特征和氢进化反应(HER)活性。吸附研究表明,与BN掺杂相比,与CO 2和N 2相比,H 2 O分子的亲和力明显更高,强调了湿度在调节气体感应响应中的关键作用。这与对新型非金属2D接口对水相互作用的有限原子规模的了解有限。Bader电荷传输分析和吸附能量计算进一步验证了H 2 O(+0.056 E)的增强吸附,从而诱导了0.5至1.2 eV的显着带隙修改。光学研究表明,可见光谱中的光吸收得到了改善,这表明了材料的光电和光催化应用的潜力。她的活性评估表明,BN掺杂降低了氢进化的过电势,从而提高了催化效率。总体而言,BN掺杂的QTP C 60纳米片具有较高的气体选择性,提高光学特性和改善的催化性能,使它们成为温室气体捕获,湿度感应和可持续能源应用的有希望的候选者。
我们通过密度函数理论计算研究了原型Mott绝缘子NIS 2的电子结构,在这些计算中,我们明确地说明了非共线性抗铁磁序,如最近在IsoelectRonic Analog Ni(S,SE,SE)2中建立的。对于金属NIS 2在高压下,我们的计算预测了Fermi表面拓扑和体积,这与最近的量子振荡研究非常吻合。但是,我们发现,即使在环境压力下,密度功能理论也错误地预测了金属基态,类似于以前的非磁性或共线性抗抗铁磁模型。通过包括Hubbard相互作用U和现场交换J,金属相被抑制,但即使是这样的扩展模型也无法描述金属到构造的相位转变的性质,并错误地描述了绝缘阶段本身。这些结果突出了更复杂的计算方法的重要性,甚至在绝缘阶段深处,远离莫特绝缘相变。