*通讯作者:Francesco Chiossi,LMU慕尼黑,慕尼黑,德国,电子邮件:francesco.chiossi@ifi.lmu.de Johannes Zagermann,Tiare Feuchtner,Harald Reiterer,Harald Reiterer,Konstanz大学konstanz.de,harald.reiterer@uni-konstanz.de Jakob Karolus,Sven Mayer,Albrecht Schmidt,Lmu Munich,Munich,Dermich,Dermany,电子邮件: Iskopf,Benedikt Ehinger,Andreas Bulling,Stuttgart大学,德国Stuttgart,电子邮件,电子邮件:nils.rodrigues@visus.uni-stuttgart.de, daniel.weiskopf@visus.uni-stuttgart.de, Benedikt.Ehinger@vis.uni-stuttgart.de, andreas.bulling@vis.uni-stuttgart.de Priscilla Balestrucci、Marc Ernst,乌尔姆大学,乌尔姆,德国,电子邮件:Priscilla.Balestrucci@uni-ulm.de, Marc.Ernst@uni-ulm.de Lewis L. Chuang,开姆尼茨工业大学,开姆尼茨,德国,电子邮件:lewis.chuang@phil.tu-chemnitz.de
非晶态固体材料因其离子电导率、稳定性和可加工性等优良特性,在储能领域引起了越来越多的关注。然而,与块体晶体材料相比,密度泛函理论 (DFT) 计算的规模限制和实验方法的分辨率限制阻碍了对这些高度复杂亚稳态系统的基本理解。为了填补知识空白并指导非晶态电池材料和界面的合理设计,我们提出了一个基于机器学习的原子间势的分子动力学 (MD) 框架,该框架经过动态训练,以研究非晶态固体电解质 Li 3 PS 4 及其保护涂层非晶态 Li 3 B 11 O 18 。使用机器学习势使我们能够在 DFT 无法访问的时间和长度尺度上模拟材料,同时保持接近 DFT 水平的精度。这种方法使我们能够计算非晶化能、非晶-非晶界面能以及界面对锂离子电导率的影响。这项研究证明了主动学习的原子间势在将从头算建模的应用扩展到更复杂和现实的系统(例如非晶材料和界面)方面的良好作用。
两对长距离作用的生物系统最近被定义为调节生理和病理组织反应的主要参与者:i)i)神经和血管系统形成了各种血脑屏障,以及控制轴突的生长和血管生成; ii)神经和免疫系统成为指导免疫反应并保持血管完整性的关键参与者。研究人员在相对独立的研究领域探索了这两对,这分别引起了神经血管联系和神经免疫学的迅速扩展的概念。Our recent studies on atherosclerosis led us to consider a more inclusive approach by conceptualizing and combining principles of the neurovascular link and neuroimmunology: we propose that the nervous system, the immune system and the cardiovascular system undergo complex crosstalks in tripartite rather than bipartite interactions to form neuroimmune cardiovascular interfaces (NICIs).
患有严重神经损伤的人通常依赖辅助技术,但目前的方法在准确解码多自由度 (DoF) 运动方面存在局限性。皮层内脑机接口 (iBMI) 使用神经信号来提供更自然的控制方法,但目前难以处理更高自由度的运动——大脑可以轻松处理这些运动。据推测,大脑通过肌肉协同作用简化了高自由度运动,肌肉协同作用将多块肌肉连接起来作为一个单元发挥作用。这些协同作用已经使用降维技术进行了研究,例如主成分分析 (PCA)、非负矩阵分解 (NMF) 和分离 PCA (dPCA),并成功用于降低噪音和提高非侵入式应用中的离线解码器稳定性。然而,它们在改善不同任务中植入记录的解码和通用性方面的有效性尚不清楚。在这里,我们评估了大脑和肌肉协同作用是否可以提高非人类灵长类动物执行双自由度手指任务时的 iBMI 性能。具体来说,我们测试了 PCA、dPCA 和 NMF 是否可以压缩和去噪大脑和肌肉数据并提高解码器在任务中的泛化能力。我们的结果表明,虽然所有方法都能有效地压缩数据,同时解码精度损失最小,但没有一种方法能通过去噪来提高性能。此外,没有任何方法能增强跨任务的泛化能力。这些发现表明,虽然降维可以帮助数据压缩,但单独使用降维可能无法揭示提高解码器性能或泛化能力所需的“真实”控制空间。需要进一步研究以确定协同作用是否是最佳控制框架,或者是否需要替代方法来增强 iBMI 应用中解码器的鲁棒性。
摘要 — 脑机接口 (BCI) 是用户和系统之间强大的通信工具,它增强了人脑直接与环境通信和交互的能力。过去几十年来,神经科学和计算机科学的进步推动了 BCI 的令人振奋的发展,从而使 BCI 成为计算神经科学和智能领域的顶级跨学科研究领域。可穿戴传感设备、实时数据流、机器学习和深度学习方法等最新技术进步增加了人们对基于脑电图 (EEG) 的 BCI 在转化和医疗保健应用方面的兴趣。许多人受益于基于 EEG 的 BCI,它有助于在工作场所或家中单调的任务下持续监测认知状态的波动。在本研究中,我们调查了脑电信号传感技术和 BCI 应用中计算智能方法的最新文献,弥补了过去五年 (2015-2019) 系统总结中的空白。具体来说,我们首先回顾了 BCI 的现状及其重大障碍。然后,我们分别介绍了用于收集和清理 EEG 信号的先进信号传感和增强技术。此外,我们展示了最先进的计算智能技术,包括可解释的模糊模型、迁移学习、深度学习和组合,以在流行的应用中监控、维护或跟踪人类的认知状态和操作性能。最后,我们提供了几个受 BCI 启发的创新医疗保健应用,并讨论了基于 EEG 的 BCI 的一些未来研究方向。
Zachary E. Shapiro,法学博士,理学硕士,是威尔康奈尔医学院医学伦理学系的博士后研究员。他还担任耶鲁法学院所罗门卫生法律和政策中心的研究员,他的奖学金用于支持耶鲁法学院脑损伤高级研究联盟 (CASBI@YLS)。他是纽约洛克菲勒大学医院伦理委员会的联合主席。2016 年以优异成绩毕业于哈佛法学院后,Shapiro 曾担任黑斯廷斯中心生物伦理研究所的总统法学学者,以及麻省总医院法律、大脑和行为中心的研究员。2017 年,他担任华盛顿特区联邦巡回上诉法院尊敬的法官 Timothy B. Dyk 的书记员 Shapiro 获得理学硕士学位。毕业于伦敦政治经济学院。
脑机接口 (BCI) 可以实现大脑和外部计算机之间的直接通信,从而可以处理大脑活动并控制外部设备。虽然 BCI 通常用于医疗目的,但它在非医疗用途上也可能大有可为,可以释放人类的神经认知潜力。在本文中,我们讨论了使用 BCI 进行认知增强的前景和挑战,特别关注侵入式增强 BCI (eBCI)。我们讨论了 eBCI 的伦理、法律和科学含义,包括与隐私、自主权、不平等以及认知增强技术对社会的更广泛影响有关的问题。我们得出的结论是,eBCI 的发展所带来的挑战远超实际的利弊,还引发了关于有意识自我的本质以及我们是谁、我们是什么以及应该成为什么的基本问题。
随着深度学习的快速发展,注意机制在脑电图(EEG)信号分析中变得必不可少,从而显着增强了大脑计算机界面(BCI)应用。本文对传统和变压器的注意机制,其嵌入策略及其在基于EEG的BCI中的应用进行了全面综述,并特别强调了多模式数据融合。通过捕获跨时间,频率和空间通道的脑电图变化,注意机制可改善特征提取,表示学习和模型鲁棒性。这些方法可以广泛地分为传统的注意机制,该机制通常与卷积和经常性网络集成,以及基于变压器的多头自我注意力,在捕获长期依赖性方面表现出色。除了单模式分析之外,注意机制还增强了多模式的脑电图应用,从而促进了脑电图与其他生理或感觉数据之间的有效融合。最后,我们讨论了基于注意力的脑电图建模中的现有挑战和新兴趋势,并强调了推进BCI技术的未来方向。本综述旨在为寻求利用注意力机制的研究人员提供宝贵的见解,以改善脑电图的解释和应用。
摘要:视觉材料是一种广泛用于刺激创造力的工具。本文探讨了视觉刺激支持新手与多模式数字音乐界面的创造性参与的潜力。对24名参与者进行了一项实证研究,以比较图形分数的抽象和文字形式对新手创造性参与的影响,以及是否了解或未了解该分数中符号的含义对创意参与都有任何影响。结果表明,当没有了解参与者的设计时,抽象的视觉刺激可以为创造性参与提供有效的脚手架。发现提供有关视觉刺激的信息既具有优势又具有缺点,这在很大程度上取决于刺激的视觉风格。被告知字面视觉刺激的含义有助于参与者做出解释和获得灵感,同时获得有关抽象刺激的信息导致沮丧。定性数据表明,两种形式的视觉刺激都支持创意参与度,但在创作过程的不同阶段,并且提出了描述性模型来解释这一点。这些发现突出了视觉刺激在音乐制作过程中支持创造性参与的好处 - 一个多模式互动域通常涉及几乎没有视觉活动或没有视觉活动。
BCI 系统包括大脑或中枢神经系统 (CNS)、脑信号采集、神经反馈、信号处理和解码、控制接口和外围设备(图 1 上部)。用户的 CNS 是 BCI 系统中最复杂、最活跃、适应性最强的子系统,不可或缺。因此,BCI 系统的设计和评估需要优先考虑用户和人体工程学。脑信号采集是 BCI 系统的另一个关键组成部分,通常是实际瓶颈之一;获取高质量的脑信号至关重要。如今,可以使用多种技术记录大脑活动,例如神经元尖峰检测(NSD,细胞外或细胞内)、皮层电图 (ECoG)、脑电图 (EEG)、脑磁图 (MEG)、正电子发射断层扫描 (PET)、功能性磁共振成像 (fMRI) 和功能性近红外光谱 (fNIRS)。 2 其中,MEG、PET、fMRI技术要求高,价格昂贵,不便携,限制了其在BCI中的广泛应用;另一方面,PET、fMRI、fNIRS依赖于脑代谢的检测,空间分辨率高,时间分辨率低,在目前的技术水平下不太适合快速的脑机交互;EEG可以无创地记录头皮信号,安全可靠,但其空间分辨率和信噪比并不比侵入式ECoG和NSD好,后者也有更广泛的应用。