描述 EIF2AK2 激酶检测试剂盒旨在测量 EIF2AK2(真核翻译起始因子 2 α 激酶 2)激酶活性,以使用 ADP-Glo™ 作为检测试剂进行筛选和分析应用。该检测试剂盒采用方便的 96 孔格式,含有足够的纯化重组 EIF2AK2 激酶(氨基酸 252 端)、激酶底物、ATP 和激酶检测缓冲液,可用于 100 次酶反应。背景 EIF2AK2(真核翻译起始因子 2 α 激酶 2,也称为 PKR)是一种蛋白激酶,已证实参与 HIV/gp120 相关神经变性。1 EIF2AK2 是 gp120 神经毒性的关键介质,也是对各种形式的环境压力作出反应的蛋白激酶家族的底物。EIF2AK2 在 mRNA 翻译、细胞增殖和细胞凋亡中起着关键作用。 EIF2AK 和 p53 之间的新型串扰可能对细胞增殖和肿瘤发生有影响。应用
Janus Kinase酶组由四种酶代表:JAK1,JAK2,JAK3和酪氨酸激酶2(TIK2),在参与多种细胞生长,存活,发育,分化和凋亡的多种细胞因子的激活中起重要作用,对免疫系统和造血系统的细胞尤其重要。此外,它是患有特应性皮炎的狗的炎症和瘙痒细胞因子(主要是JAK 1)的非常重要的信号通路。该组酶在兽医学中作为犬特应性皮炎等疾病的治疗目标而变得越来越重要。因此,本研究的目的是回顾这些酶的生理学和作用机制,从而促进对 Janus Kinase 抑制剂药物作用机制的理解。
印度马哈拉施特拉邦贝尔赫萨玛斯药学院药理学系 摘要:癌症可以看作是一组以细胞异常生长、侵入邻近组织甚至远处器官的能力以及如果肿瘤进展到超出可能范围则可能导致患者死亡为特征的疾病。癌症治疗包括化疗、基因治疗、手术、放射治疗以及根据疾病严重程度将这些治疗组合使用。小分子激酶抑制剂最近已在癌症的临床治疗中得到成功证明。自 1980 年代初首次暴露蛋白激酶以来,已有 37 种激酶得到抑制或获得 FDA 批准用于治疗乳腺癌和肺癌,多达 150 种激酶靶向药物和许多激酶特异性抑制剂处于临床试验阶段。正处于药物开发的临床前阶段。到 2023 年,将有 80 种小分子蛋白激酶抑制剂获得 FDA 批准。本综述概述了激酶靶向药物,并概述了激酶靶向癌症治疗的挑战和未来机遇。
注意:介绍部分是您的一般知识,不应将其视为政策覆盖标准。
摘要.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................1327 重要性陈述................. ... . ... . ... ... 1328 B. 调节亚基. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332 F. 代谢调节. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . . . . . . . . . . . . . . . . . . . . 1335 B. 蛋白激酶 A 催化亚基的突变 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .......................................................................................................................................................................................................................1342B.内分泌和代谢疾病.................................. ... .. 1342 2. 库欣综合征和肾上腺皮质腺瘤........................................................................................................................................................................ .................................................................................................................................. .................................................................................................................. 1344 3. 心脏粘液瘤........................................................................................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ 1344 4. 纤维发育不良和 McCune-Albright 综合征. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................................................................................................ ........................................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ 1346 7. 失活甲状旁腺激素/甲状旁腺激素相关肽信号传导障碍 ........................................................................................................................................................................................................ ........................................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ 。 。 。 。 。 。 。 。 。 。 。 。 。 。 1346
大多数肿瘤类型要么对激酶抑制剂没有反应,要么产生耐药性,这通常是由于癌细胞更广泛的信号传导回路中存在补偿性促生存途径。在这里,我们发现,通过将激酶网络重塑为赋予药物敏感性的拓扑结构,可以克服培养的原代急性髓系白血病 (AML) 细胞对激酶抑制剂的内在耐药性。我们确定了几种染色质修饰酶的拮抗剂,这些拮抗剂使 AML 细胞系对激酶抑制剂敏感。其中,我们证实赖氨酸特异性脱甲基酶 (LSD1;也称为 KDM1A) 的抑制剂重新连接了 AML 细胞中的激酶信号,从而增加了激酶 MEK 的活性,并广泛抑制了其他激酶和反馈回路的活性。因此,AML 细胞系和大约一半的原代人类 AML 样本对 MEK 抑制剂曲美替尼具有敏感性。具有 KRAS 突变和 MEK 通路活性高的原代人类细胞对 LSD1 抑制剂和曲美替尼顺序治疗反应最好,而具有 NRAS 突变和 mTOR 活性高的原代人类细胞反应较差。总体而言,我们的研究揭示了 MEK 通路是 AML 中对 LSD1 抑制剂产生耐药性的机制,并展示了一种调节激酶网络回路以潜在克服对激酶抑制剂治疗耐药性的方法。
摘要:全球已批准超过 120 种小分子激酶抑制剂 (SMKI) 用于治疗各种疾病,其中近 70 种 FDA 批准专门用于癌症治疗,重点针对表皮生长因子受体 (EGFR) 家族等靶点。激酶靶向策略包括单克隆抗体及其衍生物,例如纳米抗体和肽,以及使用激酶降解剂和蛋白激酶相互作用抑制剂等创新方法,这些方法最近已显示出临床进展和克服耐药性的潜力。然而,激酶靶向策略遇到了重大障碍,包括耐药性,这极大地影响了癌症患者的临床益处,以及与免疫疗法结合时的毒性,这限制了当前治疗方式的充分利用。尽管存在这些挑战,激酶抑制剂的开发仍然前景广阔。广泛研究的酪氨酸激酶家族有 70% 的靶点处于不同的开发阶段,而 30% 的激酶家族仍未得到充分探索。计算技术在加速新型激酶抑制剂的开发和现有药物的再利用方面发挥着至关重要的作用。最近 FDA 批准的 SMKI 强调了血脑屏障通透性对长期患者利益的重要性。本综述根据作用机制和靶点对最近 FDA 批准的 SMKI 进行了全面总结。我们总结了潜在新靶点的最新进展,并从临床角度探讨了新兴的激酶抑制策略。最后,我们概述了激酶抑制的当前障碍和未来前景。
先天免疫系统对于抵御病原体入侵、有效控制感染以及触发适应性免疫反应以消除传染源至关重要。本研究揭示了微管亲和力调节激酶 2 (MARK2) 作为广谱抗病毒免疫调节剂的关键作用,具体通过其与鸟嘌呤核苷酸交换因子 H1 (GEF- H1) 的相互作用以及与 TANK 结合激酶 1 (TBK1) 的结合。至关重要的是,MARK2 的抗病毒功效取决于其激酶活性,特别是其在丝氨酸 645 位点磷酸化 GEF-H1 的能力。该磷酸化事件是激活 TBK1 的关键触发因素,从而导致诱导 I 型干扰素 (IFN-I) 和干扰素刺激基因 (ISG)。我们的结果表明,GEF-H1 是一种 ISG,并由 MARK2 促进。这些发现不仅证实了 MARK2 是 GEF-H1 的激酶,还揭示了 MARK2 增强宿主抗病毒防御的一种以前未被认识的机制。通过对 GEF-H1 进行策略性磷酸化来增强 IFN-I 信号,MARK2 显著增强了抗病毒免疫反应,为细胞防御机制的分子协调提供了新的见解。
在陆地植物的进化中,植物免疫系统在免疫受体和信号通路中经历了扩展。谱系特异性扩张。在这里,我们表明RPS8介导的大麦抗性对病原体的肌张力肌f。 sp。tritici(小麦条带锈病)由遗传模块:PUR1和EXO70FX12赋予,这些模块是必要和足够的。pUR1编码富含亮氨酸的重复受体激酶,是米饭XA21的矫正物,exo70fx12属于Poales特异性EXO70FX进化枝。在bromeliaceae和poaceae发散后出现了Exo70FX进化枝,在测序的草中包括2至75个成员。这些结果证明了在PUR1介导的免疫力中谱系特异性EXO70FX12的要求,并且表明EXO70FX进化枝可能已经在受体激酶信号传导中演变出了专门的作用。
2015 年,FDA 批准使用一种新型酪氨酸激酶抑制剂阿来替尼 (ALB),用于治疗颅外尖点突变的间变性淋巴瘤激酶胞内域。阿来替尼于 2017 年 8 月成为首个获批的一线药物。其药理特性与前代药物不同,需要开展新的研究来确定其潜在的药理和临床意义。本综述对阿来替尼的药代动力学及其对肝胆代谢的影响进行了批判性分析。我们介绍了当前的临床数据和可用于进一步临床研究的新知识。通过这项研究,我们希望找到可以进一步延长间变性淋巴瘤激酶 (ALK) 酪氨酸激酶阿来替尼疗效的观点。酪氨酸激酶与血小板生长配体的受体结合,是一类在驱动特发性癌症的各种分子变异的发病机制中起关键作用的酶。这些激酶的不同特性使它们目前成为设计新型癌症抑制剂的优先靶标。其有效性的一个明显例子是,在患有内含子重排或 ALK 易位的肿瘤患者中取得了里程碑式的疗效。这些肿瘤大多发生在患有腺癌组织学的非小细胞肺癌患者中,而不是非吸烟型患者。此外,通过有针对性的二线干预措施开发出不同的变构耐药机制,最终显著提高了患者的生存率。