在全球范围内,三阴性乳腺癌(TNBC)是乳腺癌(BC)的无与伦比的变体,死亡率很高,疾病负担很高。然而,诊断标记和重点治疗的不足是有效治疗的主要障碍。这也是TNBC诊断患者预后不良和预后较高的原因和高爆发率的原因。长的非编码RNA(LNCRNA)是一类新的分子,由于它们作为人类疾病(尤其是癌症)的生物标志物的潜力,最近对医疗保健管理产生了兴趣。在临床实践中,人们对lncRNA的兴趣日益增长,已经对开发测定法进行了未满足的需求,以快速,准确地测试lncRNA以进行早期诊断。这些LNCRNA通过控制多个基因和变化的代谢网络来调节肿瘤发育的多个阶段,包括生长,增殖,侵袭,血管生成和转移。高度侵入性的表型和化学抗性是TNBC亚型的突出特征,需要涉及LNCRNA的准确诊断和预后仪器。这篇综述着重于TNBC中LNCRNA的不断发展的目的和联盟,并突出了它们在诊断和治疗癌症方面的强大影响。此外,我们评论的广泛文献分析在转化应用程序中为TNBC LNCRNA提供了一个机会,到目前为止所描述的TNBC lncrnas。对TNBC入学的LNCRNA的描述是全面的,足够的基础研究是需要一小时来验证当前结果并将即将来临的元素研究环境即将到来的临床实践。
肺癌是全球最常见的癌症之一,也是癌症死亡的主要原因(1)。大约10年前,在没有靶向药物的情况下,晚期肺癌的总生存期(OS)仅为10-12个月。随着越来越多靶向药物的不断应用,接受靶向治疗的晚期肺癌患者的OS延长至3年以上(2,3)。在EGFR突变的早期肺癌患者中,使用EGFR TKI作为辅助化疗也出现了同样的趋势(4,5)。靶向治疗的前提是发现更有针对性的驱动基因。长链非编码RNA(lncRNA)是一类RNA分子。它们不会翻译成蛋白质,通常长度超过200个核苷酸。LncRNA与癌症的发展密切相关(6-9)。异常表达的lncRNA已被发现是多种癌症的致癌基因(10-12)。然而,大多数 lncRNA 的功能仍不清楚。阐明它们在致癌作用中的功能和机制可能提供新的治疗靶点(13)。Li 等人分析了 Cancer Genome Atlas (TCGA) 数据库中肺腺癌 (LAUD) 的 RNA-seq 数据和 miRNA-seq 数据,以识别关键 lncRNA 并确定分子发病机制。核转录因子 Y 亚基 C 反义 RNA 1 (NFYC-AS1) 被发现是一种潜在的预后生物标志物 (14)。然而,作者并没有进一步验证 NFYC-AS1 在肺癌细胞系中的作用。关于 NFYC- AS1 功能的研究很少。例如,van der Plaat 等人通过分析全基因组关联研究 (GWAS) 数据发现 NFYC- AS1 可能在从不吸烟者的气流阻塞中发挥作用 (15)。然而,作者也没有在细胞系或动物模型中进一步验证NFYC-AS1的功能。到目前为止,还没有关于NFYC-AS1基因的分子功能、表型、动物模型、miRNA、转录因子靶点或HOMER转录等的数据。以下分子检测表明,NFYC-AS1可能通过自噬和凋亡以及MET / c-Myc致癌蛋白促进LAUD的增殖。有报道称,癌症中的自噬既是肿瘤抑制因子,也是肿瘤促进因子(16)。针对自噬相关途径可能是癌症治疗的一种有前途的策略。众所周知,细胞凋亡在癌症中起着关键作用
尽管随着医疗实践和技术的发展,胃癌的发病率在过去的几十年里有所下降,但在中国,由于晚期胃癌预后不良,胃癌死亡率仍然很高,五年生存率不足30%。2 - 4因此,为了改善胃癌的预后,揭示胃癌的机制并发现胃癌预后和治疗的特定生物标志物是一项紧迫的任务。据报道,许多基因由于其异常表达而在人类恶性肿瘤中具有更突出的生物学重要性。5其中,长链非编码RNA(lncRNA)在癌症发展和进展中发挥的重要作用随着RNA基因组学的不断发展而日益凸显。 6 越来越多的证据表明,能够转录长度超过 200 个核苷酸且不编码蛋白质的 lncRNA 在癌症和肿瘤发生发展的各个方面发挥着调控功能。
长链非编码 RNA 是包括免疫反应在内的生物过程的重要调节因子。lncRNA 的免疫调节功能主要在小鼠模型中得到揭示,而对 lncRNA 在人类免疫反应中的了解有限。在这里,我们鉴定出 lncRNA LUCAT1,它在受脂多糖和其他先天免疫刺激刺激的人类髓系细胞中上调。在髓系细胞中靶向删除 LUCAT1 会增加响应 LPS 的 I 型干扰素刺激基因的表达。相反,增加 LUCAT1 表达会导致可诱导的 ISG 反应降低。在活化细胞中,LUCAT1 在细胞核中富集,并与染色质结合。此外,LUCAT1 通过与细胞核中的 STAT1 相互作用来限制干扰素刺激基因的转录。总之,我们的研究强调了 lncRNA LUCAT1 作为诱导后反馈调节因子的作用,其功能是抑制人类细胞的免疫反应。
深度测序技术的进步表明,人类基因组的大部分都被积极地转录成 RNA。我们的实验室专注于表征基因组中产生的最大 RNA 组,即长链非编码 RNA (lncRNA) 及其相关的蛋白质结合伙伴。迄今为止,只有 3% 的 lncRNA 经过了功能验证。利用长读和短读测序技术,我们生成了巨噬细胞活化的异构体水平转录组图谱,该图谱表征了所有炎症诱导基因。利用 CRISPR 抑制技术,我们进行了系统无偏筛选,以确定与巨噬细胞内炎症功能相关的功能相关 lncRNA。我们确定 lncRNA LOUP 是一种多功能基因,涉及先天免疫的多个方面。我们表明 LOUP 可以作为增强子来调节其邻近蛋白质先锋因子 SPI1 (PU.1)。有趣的是,SPI1 可作为转录因子 NF-kB 的正调节剂,而我们确定 LOUP 是 NF-kB 的强负调节剂。我们发现 LOUP 定位于细胞质并编码一个短的开放阅读框肽。Ribo-seq 数据表明该区域是主动翻译的。我们将肽插入到与 GFP 同框的质粒中,它在 HEK 293 细胞中被主动翻译。为了确定该肽是否能在先天免疫中发挥作用,我们利用活性 CRISPR 专门针对该肽,并表明该区域确实可以作为 NF-kB 的负调节剂。总之,我们已确定 LOUP 是免疫反应的重要调节剂。它具有多种功能,顺式作用以调节 SPI1 并编码负调节 NF-kB 信号的小肽。
摘要:潜伏细胞库的存在被认为是艾滋病毒治愈的主要障碍。重新激活和消除“休克和杀伤”或永久沉默“阻断和锁定”潜伏艾滋病毒库以及基因编辑仍然是有前途的方法,但迄今为止已被证明只是部分成功。此外,使用潜伏逆转剂或“阻断和锁定”药物还存在其他问题,包括可能导致细胞毒性、可能缺乏对艾滋病毒的特异性或单独使用每种药物时效力低。RNA 分子,如微小 RNA (miRNA) 和长非编码 RNA (lncRNA) 正日益被认为是基因表达的重要调节剂。基于 RNA 的抗击艾滋病毒潜伏期方法是一种有前途的策略,因为 miRNA 和 lncRNA 都比蛋白质编码基因更具细胞类型和组织特异性。因此,可以实现更高的针对潜伏艾滋病毒库的特异性,同时降低整体细胞毒性。在这篇综述中,我们总结了目前关于人类基因组中编码的 miRNA 和 lncRNA 以及 HIV 基因组中编码的调节分子对 HIV 基因表达的调控。我们讨论了 HIV 基因表达的转录和转录后调控,以符合当前潜伏期的定义,并描述了促进 HIV 潜伏期或具有抗潜伏期特性的 RNA 分子。最后,我们提供了使用每类 RNA 作为对抗 HIV 潜伏期的潜在靶点的观点,并描述了不同 RNA 分子、它们的蛋白质靶点和 HIV 之间相互作用的复杂性。关键词:HIV、HIV 潜伏期、微小 RNA、长链非编码 RNA、HIV 转录本、基因表达调控
胰腺癌是全球第八大癌症死亡原因。包括吉西他滨、5-氟尿嘧啶、阿霉素和顺铂在内的化疗,免疫检查点抑制剂的免疫治疗以及靶向治疗已被证明可以显著改善晚期胰腺癌患者的预后。然而,大多数患者对这些治疗药物产生了耐药性,导致患者生存期缩短。导致胰腺癌耐药性的详细分子机制仍不清楚。越来越多的证据表明,非编码 RNA(ncRNA),包括微小 RNA(miRNA)、长链非编码 RNA(lncRNA)和环状 RNA(circRNA),参与胰腺癌的发病机制和耐药性的发展。在本综述中,我们系统地总结了各种 miRNA、lncRNA 和 circRNA 对胰腺癌耐药性的新见解。这些结果表明,针对肿瘤特异性 ncRNA 可能为胰腺癌治疗提供新的选择。
黑色素瘤是最致命的皮肤癌,全球发病率不断上升。尽管黑色素瘤患者的诊断和治疗方法有很大改进,但该疾病仍然是一个严重的临床问题。因此,新的可用药物靶点成为研究的重点。EZH2 是 PRC2 蛋白复合物的组成部分,可介导靶基因的表观遗传沉默。在黑色素瘤中已发现几种激活 EZH2 的突变,这会导致肿瘤进展过程中的异常基因沉默。新出现的证据表明,长链非编码 RNA (lncRNA) 是 EZH2 沉默特异性的分子“地址代码”,靶向 lncRNA-EZH2 相互作用可能会减缓包括黑色素瘤在内的许多实体癌的进展。本综述总结了目前关于 lncRNA 参与 EZH2 介导的黑色素瘤基因沉默的知识。本文还简要讨论了阻断黑色素瘤中的 lncRNA-EZH2 相互作用作为一种新治疗选择的可能性,以及这种方法可能存在的争议和缺点。
[摘要]长的非编码RNA(LNCRNA)是由200多个核苷酸构成的RNA分子,表现出相对较低的序列保护。很长一段时间以来,它们被视为“转录噪声”,即在生物领域中的非功能性RNA分子。近年来,随着研究的进步,科学家们在lncrnas中揭示了许多小型开放式阅读框(SORF),其中一些可以编码微肽。这些微肽已被证实参与了各种细胞过程和基因表达调节网络,扮演着至关重要的作用。这一发现为进一步探索生活活动以及临床诊断和疾病治疗的新研究方向开辟了新的研究方向。本综述总结了LNCRNA编码的菌根在病理和生理过程中的作用,微肽的亚细胞定位和功能机制以及微肽研究方法的进展,旨在为新型积分基于磨性的诊断诊断和治疗方法提供洞察力和参考。[关键词]长的非编码RNA;小开放阅读框;微肽;肿瘤
通常,诊断和治疗较早的肾癌,结果越好。肾癌期生存期为5年的存活率(1)。肾细胞癌(RCC)是最常见的恶性肾脏肿瘤类型。它是在发生过滤的肾脏的主要物质中发现的。RCC可以在肾脏内显示为单个肿瘤,也可以在同一肾脏内显示为两个或两个或更多肿瘤(2)。10个肾脏癌中约有9个是肾细胞癌。尽管RCC通常在肾脏中成长为单个肿瘤,但可以同时在一个肾脏或两个肾脏中同时有两个或更多的肿瘤(3)。RCC根据实验室中癌细胞的出现分为几种亚型。知道RCC的亚型可以帮助您的医生确定您的癌症是否是由遗传性遗传综合征引起的(4)。尽管在RCC治疗方面取得了许多成功,但治疗方案和反应率在各种分子亚型之间有所不同(5)。治疗肾脏肿块的主要目标用于治愈癌症患者并尽可能保留肾脏功能。保护肾功能对于仅肾脏或另一种类型的肾脏疾病的患者很重要(6)。长的非编码RNA(LNCRNA)是RNA转录本,其长度超过200个核苷酸,但未转化为蛋白质。近年来,LNCRNA被发现是各种生物学功能和基因表达调节的重要参与者(7)。某些LNCRNA表达的变化与各种形式的癌症有关(8)。许多LNCRNA,包括Hotair(9),MRCCAT1(9),UCA1(10),ATB(11),H19(12)和–FTX(13)(13),已在RCC肿瘤发生中鉴定出来,并建议对RCC的重要生物标志物进行重要的生物标志物。核拼接组装转录本1(NEAT1)是一个长的非编码RNA,从家族性肿瘤综合征转录,在11q13.1染色体上的多个内分泌肿瘤(MEN)1型基因座,并编码两个转录变体,NEAT1 -1 -1(3756 bp)和Neateat 1(3756 bp)和Neat11 -2 -226 -Bp- 3756 Bp(3756)。由于缺乏NEAT1的小鼠正常发育,因此似乎不需要Neat1来正常的胚胎发育或成人生活。然而,在另一种情况下,Neat1的遗传消融导致乳腺形态发生异常和泌乳缺陷(15)。如果Neat1的损失与正常的细胞活力和生长一致,则应进一步研究。由于Neat1负责肿瘤起始