长的非编码RNA(LNCRNA)是一类NCRNA,大小超过200个核苷酸,在不同的细胞过程中起多种作用,包括调节许多生物学过程,例如通过抑制蛋白质编码靶基因来调节增殖,侵袭和凋亡(26)。因此,LNCRNA被认为是包括癌症在内的各种疾病中的新型生物标志物和治疗靶标(26)。lncRNA转移相关的肺腺癌转录本(MALAT1)已被证明可以调节IGF-1/ PI3K/ AKT信号传导(28),并与各种癌症类型的恶性转化有关(3)。以前,我们表明了Malat1表达升高是IDH1/2野生型原代GBS总体生存的不利预后因素的重要性(3)。此外,在DM中观察到Malat1的高表达并导致胰岛素抵抗(7)。但是,MALAT1在GB发育中的潜在作用仍需要充分说明。因此,在这项研究中,我们旨在描述GB中MALAT1与DM共存的MALAT1及其对疾病进展的潜在影响。
结肠癌是美国癌症的主要原因之一。结肠癌是由结肠癌细胞基因组中的许多基因突变发展而来的。长的非编码RNA(LNCRNA)会导致许多癌症(包括结肠癌)的发育和进展。lncRNA已经并且可以通过簇状的定期间隔短的短质体重复序列(CRISPR)相关的核酸酶9(CRISPR/CAS9)系统的聚类重复序列的基因编辑技术来纠正,以减少结肠癌细胞的增殖。但是,许多用于运输基于CRISPR/CAS9的疗法的当前输送系统需要更多的安全性和效率。基于CRISPR/CAS9的治疗药需要安全有效的递送系统,以更直接,更明确地靶向结肠中存在的癌细胞。本综述将提供有关使用植物衍生的外泌体样纳米颗粒作为纳米载体的效率和安全性的相关证据,以提供基于CRISPR/CAS9的疗法以直接靶向结肠癌细胞。
简单的摘要:长期非编码RNA在转录和翻译水平上都是基因表达的关键调节剂,它们的改变(在表达或序列中)与肿瘤发生和肿瘤进展有关。RNA编辑具有独特的能力,可以改变RNA序列而不改变基因组DNA的完整性或序列,而腺苷对插入(A-TO-I)RNA编辑是人类最常见的事件。具有转录后改变遗传信息的能力,RNA编辑是转录组和蛋白质组富集的重要参与者。但是,如果放松管制,它可能有助于细胞转化。在本文中,我们在lncrna进行了第一个从头编辑调查,表明RNA编辑是一种普遍存在的现象,涉及lncrnas对脑和脑癌很重要。我们的研究将打开一项新的研究领域,其中lncRNA和RNA编辑之间的相互作用可以增加对癌症的新见解。
哺乳动物中的生殖细胞发育是一个复杂的生理过程,涉及原始生殖细胞,减数分裂和男性配子的形成。长的非编码RNA(LNCRNA)是一种不代表蛋白质代码的核苷酸的RNA。已经显示出少数LNCRNA参与卵巢中的睾丸和卵泡发育中的精子发生,但是绝大多数LNCRNA及其分子机制的作用仍然需要进一步研究。lncRNA GM2044鉴定为小鼠精子发生中差异表达的lncRNA。在小鼠睾丸中,lncRNA GM2044可以充当竞争的内源性RNA,以调节源自小鼠精子细胞细胞的GC-2细胞中的SYCP1表达,并且它也可以充当miR-202的宿主基因来调节RBFOX2蛋白的表达。在雌性小鼠卵巢中,lncRNA GM2044通过miRNA-138-5P-NR5A1途径或与EEF2相互作用,调节17β-雌二醇合成。此外,研究表明LNCRNA GM2044还参与了生殖系统疾病的进展,例如雄性非刺激性植物植物。在这里,我们总结了lncRNA GM2044在男性和女配子发生中的作用和分子机制及其在某些不育疾病中的潜在作用。
胶质母细胞瘤 (GBM) 是所有原发性脑肿瘤中最恶性的一种,每年导致全球约 200,000 人死亡。GBM 的标准疗法包括手术切除,然后进行以替莫唑胺为基础的化疗和/或放疗。通过这种治疗,GBM 患者在初次诊断后的平均生存期仅为 15 个月。因此,迫切需要新的、更好的 GBM 治疗方式。越来越多的证据表明,非编码 RNA (ncRNA) 作为基因表达的调节剂发挥着关键作用。长链非编码 RNA (lncRNA) 和微小 RNA (miRNA) 是健康和疾病中研究最多的 ncRNA。几乎所有类型的肿瘤,包括 GBM,都存在 ncRNA 失调。在 GBM 细胞系和 GBM 肿瘤样本中已鉴定出几种失调的 miRNA 和 lncRNA。其中一些已被提议作为诊断和预后标志物,以及作为 GBM 治疗的靶点。大多数基于 ncRNA 的疗法使用寡核苷酸 RNA 分子,而这些分子在循环中的寿命通常较短。纳米粒子 (NP) 旨在增加寡核苷酸 RNA 的半衰期。血脑屏障 (BBB) 的存在不仅是 RNA 寡核苷酸面临的另一个挑战,也是针对大脑相关疾病的疗法面临的另一个挑战。BBB 是保护大脑免受不良物质侵害的解剖屏障。尽管一些 NP 已在其表面衍生化以穿过 BBB,但目前还没有最佳的 NP 来将寡核苷酸 RNA 递送到大脑中的 GBM 细胞中。在这篇综述中,我们首先描述了 GBM 疗法的当前治疗方法。接下来,我们将讨论被建议作为 GBM 治疗靶点的最相关的 miRNA 和 lncRNA。然后,我们比较了目前用于 RNA 寡核苷酸输送的药物输送系统(纳米载体/NPs)、将药物输送通过 BBB 所面临的挑战以及克服这一障碍的策略。最后,我们归类了研究应重点关注的关键点,以便设计出用于将药物输送到大脑的最佳 NPs;从而将基于寡核苷酸 RNA 的疗法从实验室转移到临床环境。
引入了严重的缺氧 - 缺血性诱导的急性心肌梗死(AMI),尽管我们对低氧分子机制的理解有限,急性心肌梗死(AMI)仍然是世界范围内死亡的主要原因之一,这些机制负责低氧 - 异常介导的心脏介导的心脏细胞损害(1-3)。因此,我们迫切要发现新颖的分子机制并为AMI开发新的疗法(3)。长的非编码RNA(LNCRNA)被定义为具有强生物学功能的〜200个核苷酸的非编码RNA。最近的研究已经确定,一组LNCRNA与AMI有关,该研究可能代表了一类新型的诊断生物标志物和治疗靶标(4,5)。BIM诱导死亡(Morrbid)的髓样RNA调节剂是2016年鉴定出的白细胞特异性lncRNA,在小鼠和人类之间是保守的,是白细胞寿命的关键控制因素(6)。另一项研究报告说,白细胞特异性的莫比德与左心室肥大有关(7)。迄今为止,尚不清楚心肌细胞是否可以表达Morrbid以及Morrbid的角色在心脏病中,例如AMI。为此,我们已经确定人类和小鼠心肌细胞都可以表达大量的莫比德。Morrbid的表达显着增加,并且在AMI后小鼠心脏中显着增加。因此,当前的研究旨在确定Car-diac肌细胞Morrbid在AMI中的作用,并确定涉及的潜在细胞和分子机制。
摘要 背景 检查点靶点在肿瘤介导的免疫逃逸中起着关键作用,因此对癌症免疫治疗至关重要。不幸的是,缺乏汇编所有检查点靶点以用于免疫肿瘤学中的转化研究和药物发现的生物信息学资源。 方法为此,我们开发了检查点治疗靶点数据库 (CKTTD),这是第一个针对免疫检查点靶点(蛋白质、miRNA 和 LncRNA)及其调节剂的综合数据库。采用评分系统以高置信度筛选更多相关靶点。此外,Oncomine、Drugbank、miRBase 和 Lnc2Cancer 数据库等一些生物数据库被集成到 CKTTD 中,以提供深入的信息。此外,我们计算并提供了所有靶点的配体结合位点信息,这可能为基础科学家进行药物发现工作提供支持。结果 CKTTD 总共汇编了 105 个检查点蛋白靶点、53 个调节剂(小分子和抗体)、30 个 miRNA 和 18 个 LncRNA,这些实验证据均通过增强型文本挖掘系统从 10 649 篇文献中整理出来,这些证据均经过验证。 结论 总之,CKTTD 可以作为癌症免疫治疗和药物发现研究的有用平台。CKTTD 数据库可在 http://www.ckttdb.org/ 上免费向公众开放。
最受欢迎的传统临床生物标志物评估肾脏功能和糖尿病肾脏疾病(DKD)的鉴定,包括血清肌酐(SCR),肾小球滤过率(EGFR),尿白蛋白肌酐比率(UACR)和白蛋白尿尿症检测[7,8]。即使存在这些传统标记,及时,精确的DN诊断也存在重大障碍。最近的研究表明,大约30%的DN患者没有蛋白尿[9]。此外,在DN患者中,特别是在T2D中,在没有蛋白尿的情况下,GFR的降低。相反,这些患者以严重降低的GFR降低了慢性肾脏疾病(CKD),而没有从微藻尿症过渡到明显的蛋白尿[10]。并非特定于DKD的存在,也可能发生在其他疾病中[11]。由于DN的早期诊断对于防止该疾病的发展至关重要,因此近年来已经努力引入新的DN诊断标记。最近的研究表明,非编码RNA(NCRNA),尤其是microRNA(miRNA)和长期编码RNA(LNCRNA)参与DN的发作和进展[12-14]。LNCRNA和miRNA之间的相互作用,称为miRNA海绵或竞争性内源性RNA(CERNA),可以减少miRNA对mRNA的抑制作用,从而防止靶基因抑制[15]。此外,NCRNA可以作为一种新型敏感和无创的诊断生物标志物来预测DN进展,因为它们在体液,组织和组织和细胞特异性表达曲线上的稳定性很高[16,17]。
介绍在生命的第一周,小鼠能够再生受伤的心肌(1,2)。与具有再生能力的其他物种类似,鼠后心脏的再生是通过现有心肌细胞的扩散来实现的(1,3,4)。促脂性免疫细胞的浸润(5),血管生成和动脉生成(6)和心脏组织的神经(7)神经(7)有助于这种短暂的再生能力。在此期间,即使心肌细胞中存在DNA合成,它也主要与核核酸化有关(8)。,已经提出了多倍体或双核心肌细胞的出现,是斑马鱼和鼠后再生后再生能力丧失的原因(9,10)。此外,在较大的哺乳动物和人类中,心肌细胞正在从单核和增殖状态过渡到一生多核的态度(11-13)。几项研究已经解决了再生下降的基础机制,并报告了涉及心肌细胞增殖丧失的转录和代谢机制(14)。ERBB2对心肌细胞的代谢重编程对于再生心脏中心肌细胞的增殖至关重要(15,16)。此外,河马途径效应子YAP的一种活跃形式通过激活胚胎和增殖基因表达程序的表达来促进心脏再生(17)。此外,小型非编码microRNA,例如miR-15(2),mir-199(18)和miR-34a(19)调节心肌细胞增殖。人类基因组含有16,000至100,000长的非编码RNA(LNCRNA)(20,21)。lncRNA被定义为未转化为蛋白质的200个核苷酸的转录本(22)。他们可以调节其他基因的表达(23),并以细胞类型特异性方式表达(22)。
早在2020年3月,Covirna项目就启动了,目的是开发基于RNA的诊断测试,以利用人工智能(AI)来预测Covid-19感染后的临床结果。“我们的理由是利用特定类型的RNA分子的功能,称为非编码RNA,这些分子已成为大多数病理学的新的有价值的候选生物标志物和治疗靶标,” Yvan Devaux博士解释说。的确,该财团先前已经确定了与心血管疾病相关的2,906个长的非编码RNA(LNCRNA)的小组,这些小组与内部开发的生物信息学算法一起提供了一种新工具,提供了一种新工具,具有帮助诊断和风险分层的心脏病。“由于面板包含许多与炎症相关的LNCRNA,炎症是SARS-COV-2对人体对感染的反应的标志,因此我们认为我们可以“翻译”以前的发现并将其应用于Covid-19,以识别单个患者的预测因素。”该团队分析了来自卢森堡,德国,英国和加拿大的四个同龄人的1,286名Covid-19患者的血液样本和临床数据,总计2,906个非编码RNA。三名与804名患者的队列合并为一个“发现”队列,用于选择预测特征和最佳性能机器学习(ML)模型的选择,而第四名482名患者的队列用于验证。