Anthony T. Phan 1 , Emily Aunins 1 , Elisa Cruz-Morales 1 , Garima Dwivedi 3,4 , Molly Bunkofske 1 , Julia N. Eberhard 1 , Daniel L. Aldridge 1 , Hooda Said 2 , Omar Banda 2 , Ying Tam 6 , David A. Christian 1 , Robert H. Vonderheide 3,7 , Ross M. Kedl 5 , Drew Weissman 3,4 , Mohamad-Gabriel Alameh 2,3,4 , Christopher A. Hunter 1
CureVac NV(“公司”)的本演示文稿包含构成“前瞻性陈述”的陈述,该术语的定义见美国《1995 年私人证券诉讼改革法》,包括表达公司对未来事件或未来结果的意见、期望、信念、计划、目标、假设或预测的陈述,与反映历史事实的陈述不同。示例包括讨论公司疫苗和治疗候选药物的潜在功效以及公司的战略、融资计划、现金跑道、增长机会和市场增长。在某些情况下,您可以通过“预期”、“打算”、“相信”、“估计”、“计划”、“寻求”、“预计”或“期望”、“可能”、“将”、“会”、“可能”、“潜在”、“打算”或“应该”等术语或类似表述来识别此类前瞻性陈述。前瞻性陈述基于管理层当前的信念和假设以及公司目前掌握的信息。然而,这些前瞻性陈述并不能保证公司的业绩,您不应过分依赖此类陈述。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
在这项为期 13 个月的随访研究中,我们研究了一批接种过疫苗且之前未感染过 SARS-CoV-2 的医护人员,以评估他们对 BNT162b2 mRNA COVID-19 疫苗的体液和细胞反应。我们测量了第一剂和第二剂后、第二剂后五个月以及第三剂之前和之后的中位免疫球蛋白 G 和淋巴细胞亚群水平。我们的研究结果表明,每剂疫苗都有显著的初始细胞和体液反应,尽管逐渐下降表明可能需要长期加强剂量。年龄分析显示,第一剂给药后,年轻组的免疫球蛋白 G 水平明显较高,尽管这些差异在后续剂量中没有保持。保持细胞免疫力可以确保对 SARS-CoV-2 感染的长期保护。
使用病毒载体(例如AAV)实现了体内基因编辑,但是这些稳定的基于DNA的载体导致Cas9核糖核酸酶和SGRNA在细胞7中的长期表达。虽然扩展到编辑机械的接触可能有利于基因校正率,但它也可能导致脱靶遗传改变的积累8,9。此外,AAV CAPSIDS的免疫原性触发中和抗体和T细胞反应限制了基于AAV的治疗方法的重复给药10;但是,由于较高的细胞周转率11,肺中的基因编辑受益于重复给药。此外,尺寸限制对将有效的Pyogenes CRISPR-CAS9(SPCAS9)构建体构成了挑战,将其限制到AAVS 12中。可以通过非病毒,基于mRNA的递送平台来克服这些局限性,该平台能够瞬时表达并重复给药13。LNP是最先进的非病毒载体,如Moderna和Pfizer/Biontech开发的广泛接受的mRNA疫苗技术所见,并在Cas9肝基因编辑平台14-16中显示出巨大的希望。然而,尚未报告基于LNP的CAS9递送系统,用于有效的肺基因修饰。与肝脏相比,由于其专门的细胞类型,粘液屏障和粘膜缩减清除率,肺部对分娩构成了独特的挑战。因此,由于大多数病毒和非病毒方法17,气道上皮仍然很差,因此仍然需要采取有效的方法。
识别潜在有趣的基因或类似基因的特征的一种方法是使用cDNA数据库。CDNA对于基因鉴定很有用,因为它们是由mRNA制成的,并反映了基因组的表达区域。为了在时间和财务上进行大规模的cDNA测序,随机采用cDNA克隆,并测序cDNA的一端或两端。每个cDNA克隆仅在一个通过中进行测序,就像单个基因组读数一样。这些序列通常称为表达的序列标签(ESTS)。因此,EST是低质量的核酸序列,所有与单读相同的问题。大多数EST仅代表cDNA的一部分(一端或另一端)。但是,它们可以用作构建更完全注释的mRNA的构建块,例如RefSeq mRNA数据库中发现的一些序列。除了相对较低的EST读取质量(大约2%的误差)外,EST还具有其他局限性。通常,归一化程序用于允许对稀有的转录本进行采样。但是,仍然存在偶然的可能性,可能完全因为它们的表现较低或不在给定的库中而完全丢失了稀有的成绩单。转录本也可能遗漏,因为它们未在用于构建各种cDNA文库的组织,细胞类型或发育阶段表达。(有关更多信息,请参见NCBI手册。)在本练习中,我们将使用mRNA和EST序列指导和验证我们的注释工作。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 26 日发布。;https://doi.org/10.1101/2024.12.24.629478 doi:bioRxiv preprint
主要结果:在100名化粪池患者的180个芯片中,我们在ICU入院后的第1天和第2-3天都在幸存者与非活物中的39个上调和2个下调差异表达的基因(DEG)。我们将上调DEG的集线器基因以及CX3CR1和IL1B结合了计算表达比。CDK1/CX3CR1比率具有最佳性能,可以预测全因ICU死亡率,在ROC曲线(AUROC)下的面积为0.77(95%置信区间[CI] 0.88-0.66),在第2天,在ICU下,在ICU下,第1天,0.82(95%CI 0.91-0.72)的面积为0.82(95%CI 0.91-0.72)。这种性能比每个单独的mRNA生物标志物要好。在外部验证队列中,使用RT-QPCR测量的CDK1/CX3CR1比的预测性能与第1天测量时乳酸的预测性能相似,在第2-3天测量时较高。结合乳酸水平和CDK1/CX3CR1比率,我们确定了3组具有ICU死亡率风险增加的患者,范围为9%至60%,中级风险群体死亡率为28%。
摘要:大核酸(例如mRNA)向大脑的全身递送,部分原因是由于血脑屏障(BBB)和输送车辆在肝脏中积聚的趋势。在这里,我们设计了一个肽官能化的脂质纳米颗粒(LNP)平台,用于靶向mRNA向大脑的递送。我们利用点击化学来用肽在脑内皮细胞和神经元中靶向过表达的肽,即RVG29,T7,AP2和MAPOE肽。我们评估了LNP靶向在体外对脑内皮和神经元细胞转染的影响,研究了血清蛋白吸附,细胞内运输,内皮胞质症和外体分泌等因素。最后,我们表明LNP肽功能化增强了小鼠脑中的mRNA转染并减少全身给药后的肝输送。具体而言,RVG29 LNP改善了体内神经元转染,确立了其作为将mRNA传递给大脑的非病毒平台的潜力。关键字:脂质纳米颗粒,mRNA,肽,脑输送,血脑屏障,神经元
