基于 RNA 的疗法(例如 mRNA、siRNA、microRNA、ASO 和 saRNA)在肿瘤治疗方面具有巨大潜力。RNA 修饰和递送系统的开发和优化使得 RNA 货物能够在体内稳定高效地递送,从而引发抗肿瘤反应。目前已有具有多种特异性和高效性的靶向 RNA 疗法。在这篇综述中,我们讨论了基于 RNA 的抗肿瘤疗法的进展,包括 mRNA、siRNA、miRNA、ASO、saRNA、RNA 适体和基于 CRISPR 的基因编辑。我们重点关注 RNA 药物的免疫原性、稳定性、翻译效率和递送,并总结了它们的优化和递送系统的开发。此外,我们还描述了基于 RNA 的疗法诱导抗肿瘤反应的机制。此外,我们还回顾了 RNA 货物的优点和局限性及其对癌症的治疗潜力。
trim71是在人类中大量表达的基因,在早期的胚胎发生和神经分化中起着至关重要的作用,通过与靶MRNA结合,触发翻译抑制或mRNA降解。3 Qiuying Liu等人,研究人员使用交联的免疫沉淀和测序(CLIP-SEQ)技术探索了小鼠中CH相关的突变。这项研究很重要,因为蛋白质对人类表现出相似的反应。4研究表明,突变的TRIM71蛋白与不同的靶标mRNA结合,表明“功能的获取”。具体而言,小鼠中的R595H-TRIM71与CTNNB1基因中的mRNA结合,该基因编码了β-catenin蛋白,这对于干细胞分化至关重要。5抑制其翻译可阻止神经发育必需蛋白质的产生。相反,R783H-TRIM71与LSD1 mRNA结合,抑制其翻译并导致干细胞分化的缺陷。5
• 非病毒递送的mRNA 目前,已开发两种形式的mRNA疫苗:常规mRNA疫苗和自扩增mRNA疫苗,后者源自正链RNA病毒。纯化的RNA复制子以合成配制的RNA递送到宿主细胞后,会通过其编码的RNA依赖性RNA聚合酶进行大量翻译和扩增。与常规mRNA的快速表达相比,已发表的结果表明,接种自扩增mRNA疫苗可导致更高的抗原表达水平,尽管时间有所延迟,但可在体内持续数天。虽然RNA剂量要低得多,但可提供同等的保护。由于缺乏病毒结构蛋白,复制子不会产生传染性病毒颗粒。此外,常规mRNA和自扩增mRNA
SARS-CoV-2 是当前全球大流行的罪魁祸首,它必须克服所有病毒都面临的难题。为了实现自身的复制和传播,它同时依赖和破坏细胞机制。在感染的早期阶段,SARS-CoV-2 表达病毒非结构蛋白 1 (NSP1),它通过阻断核糖体上的 mRNA 进入通道来抑制宿主翻译;这会干扰细胞 mRNA 与核糖体的结合。另一方面,病毒 mRNA 克服了这种阻断。我们表明 NSP1 增强了含有 SARS-CoV-2 前导序列的 mRNA 的表达。病毒前导序列中的第一个茎环 (SL1) 对于这种增强机制既必要又充分。我们的分析确定了 SL1 内的特定残基(位置 15、19 和 20 处的三个胞嘧啶残基)和 NSP1 内的另一个残基(R124),它们是病毒逃避所必需的,因此可能成为有希望的药物靶点。我们利用反义寡核苷酸 (ASO) 靶向 SL1,以有效且特异性地下调 SARS-CoV-2 mRNA。此外,我们使用 BioID 对 NSP1 的功能性相互作用组进行了分析,并确定了抗病毒防御途径的组成部分。因此,我们的分析表明 NSP1 抑制宿主基因表达同时增强病毒 RNA 表达的机制。该分析有助于调和文献中关于病毒避免 NSP1 沉默的机制的相互矛盾的报道。
抽象的糖皮质激素发挥抗炎,抗增生性和免疫性作用。矛盾的是,它们也可能会增强炎症,尤其是在神经系统中,如库欣综合征和人类和人类疾病模型的神经退行性阶段所示。。”肌萎缩性侧面硬化症的摇摆小鼠模型显示出用糖皮质激素受体(GR)调节剂Dazucoril(Cort113176)的治疗而弥补的高皮质激素和神经炎症。这种作用表明GR介导了慢性糖皮质激素不良影响。现在,我们使用类似于Wobbler小鼠雄性NFR / NFR小鼠的状况的慢性应激模型进行了测试,或者将接受限制 /旋转应力方案进行3周,而接受Cort113176的一组应激小鼠也进行了3周。我们确定了促进性因子HMGB1,TLR4,NFKB,TNFα,星形胶质细胞增多症(GFAP,SOX9和oakapaporin 4),微胶质细胞增多症的mRNA或活性蛋白。我们表明,慢性应激产生了高水平的血清皮质酮和IL1β,体重减轻,体重减轻,产生小胶质细胞增多和星形胶质细胞增多,并增加促炎性介质。在压力小鼠中,使用Cort113176对GR进行调节降低了IBA + Microglio SIS,CD11b和P2RY12 mRNA,免疫反应性HMGB1 +细胞,GFAP + Astrogliosis,Sox9和a o o ocapoporin and aquaporin表达以及TLR4和TLR4和NFKB mRNAS VSS VSS。Cort113176的作用表明糖皮质激素可能参与神经炎症。因此,GR的调节将有助于抑制神经退行性疾病的炎症成分。
背景:近年来,LncRNA作为竞争性内源性RNA(ceRNA)的一员,在肺癌耐药中发挥着重要作用。本研究旨在利用全面的ceRNA网络识别顺铂耐药肺癌细胞的潜在生物标志物。方法:GSE6410(GPL-201)分析了A549 NSCLC细胞中顺铂耐药基因表达变化。GSE43249(GPL-14613)包括源自顺铂耐药A549肺细胞的非编码RNA表达谱。在线分析工具GEO2R分析了差异表达的mRNA和miRNA(DEmRNA和DEmiRNA)。为了探索差异表达mRNA的功能富集意义,我们使用了GO(基因本体)和KEGG(京都基因和基因组百科全书)通路分析。通过 miRDB、Targetscan、Starbase 和 miRWalk 寻找靶向 miRNA,采用 Kaplan-Meier 曲线法对靶向 RNA 的临床生存率进行分析( P<0.05),Starbase 数据库预测了潜在的 lncRNA 介导的靶向 miRNA。最后利用 cytoscape3.7.2 构建了 lncRNA、miRNA、mRNA 的新型 ceRNA 网络。结果:118 个差异表达的 mRNA 构成了介导的 ceRNA 网络的基础。DAVID 和 Kaplan-Meier 筛选出凋亡调节因子 BAX,维恩图显示 8 个 miRNA 共同调控 BAX。Starbase 预测 lncRNA XIST 介导的 miRNA。最后,lncRNA XIST 可能是调节肺癌细胞顺铂耐药性的有用生物标志物,进一步探讨了 BAX 可能影响肿瘤浸润免疫细胞。结论:LncRNA XIST在BAX调控顺铂耐药过程中与miRNA 520竞争性结合,参与p53信号通路引起细胞凋亡。
方法:用于对ONFH患者和健康对照组中的mRNA表达训练进行仔细检查,其数据整合来自GEO数据库。de mRNA。通过基因和基因组(KEGG)途径富集分析,基因本体论(GO)功能分析以及基因集富集分析(GSEA)的基因和基因组(KEGG)途径富集分析,基因和基因组百科全书(GSEA)探索了DE mRNA的生物学功能。此外,支持向量机 - 递归特征消除(SVM-RFE)和最低绝对收缩和选择操作员(Lasso)(Lasso)被用来辨别与该疾病相关的诊断生物标志物。接收器操作特征(ROC)分析用于评估特征基因的统计性能。使用QRT-PCR在从ONFH患者和健康对照组中获得的骨组织中进行关键基因的验证。成骨分化,以验证关键基因与成骨分化之间的相关性。最后,执行免疫细胞进行锻炼分析以评估ONFH中的免疫细胞失调,同时探索免疫细胞内效率与关键基因之间的相关性。
“脱靶效应很可能发生在存在与 siRNA 种子区域形成碱基配对的非靶标 mRNA 时,”Hiroshi Abe 教授解释道。“我们意识到,可以通过化学修饰降低该种子区域的碱基配对能力或双链稳定性来抑制脱靶效应,确保只有当整个引导链与靶标 mRNA 结合时才能形成稳定的复合物。”
摘要的最新发现表明,翻译伸长率会影响mRNA稳定性。与mRNA衰变和翻译速度之间有关这种联系的因素之一是酵母死盒解旋酶DHH1P。在这里,我们证明了DHH1P的人类直系同源物DDX6触发了人类细胞中未效率低下的mRNA的依赖性衰减。ddx6通过其reca2域中的phe-aspphe(FDF)基序与核糖体相互作用。此外,ddx6需要reca2-介导的相互作用和ATPase活性才能使降低效率低下的mRNA。使用核糖体分析和RNA测序,我们确定了以DDX6依赖性方式调节的两类内源mRNA。确定的靶标在稳态水平上进行翻译调节或调节,并且要么表现出较差的总体翻译或局部降低的核糖体易位速率的特征。将确定的序列延伸到报告基因mRNA中,导致报告基因mRNA的翻译和DDX6依赖性降解。总而言之,这些结果将DDX6识别为mRNA翻译的关键调节剂,并由缓慢的核糖体运动触发,并洞悉DDX6降低了效率低下的mRNA的机制。
RNA 修饰最近已成为基因表达调控中广泛而复杂的一个方面。它们被统称为表观转录组,包括 170 多种对 RNA 命运具有深远影响的不同化学修饰。这些修饰可以发生在所有 RNA 物种中,包括信使 RNA (mRNA) 和非编码 RNA (ncRNA)。在 mRNA 中,书写者、擦除者和阅读者对化学标记的沉积、去除和识别会影响其结构、定位、稳定性和翻译。反过来,这会调节关键的分子和细胞过程,例如 RNA 代谢、细胞周期、细胞凋亡等。鉴于表观转录组标记与细胞和生物体功能的相关性,毫不奇怪,在包括癌症、神经系统和代谢疾病在内的多种人类疾病中都观察到了表观转录组标记的改变。在这里,我们将回顾主要类型的 mRNA 修饰和编辑过程以及参与其代谢的酶,并描述它们对人类疾病的影响。我们在更新的目录中介绍了当前的知识。我们还将讨论有关表观转录组标记串扰的新证据,以及这种相互作用对 mRNA 修饰动态的影响。了解这一复杂的调节层如何影响人类病理学的进程最终将导致其向新的表观转录组治疗策略的开发。