摘要 我们首次提出了一种可信接受度指标及其测量方法,以评估用于食品能量水 (FEW) 管理决策的基于 AI 的系统的可信度。所提出的指标是 AI 系统标准化进程中的重要一步。标准化 AI 系统的可信度至关重要,但到目前为止,标准化工作仍然停留在高级原则层面。所提出的测量方法包括人类专家的参与,并且基于我们的信任管理系统。我们的指标捕获并量化了现场专家在用户希望的尽可能多的控制点上对系统的透明评估。我们使用 AI 在食品-能源-水部门的决策场景中说明了可信接受度指标及其测量方法。但是,所提出的指标及其方法可以轻松地适应其他 AI 应用领域。我们表明,我们的度量标准成功地捕捉到了任意数量专家的总体接受度,可以用来对系统的各个点进行多次测量,并为测量的接受度提供置信度值。
通过总结所有测量系统的共同要素,并简要回顾成为主要测量系统的两种测量系统的起源和演变,对这一问题进行了更深入的研究
作用 β 在 S 上是传递的,并将其变成齐次流形[2-5]。因此,U(H) 正则作用的基本向量场形成 GL(H) 作用的基本向量场代数的李子代数。[6] 证明了,为了描述 β 的基本向量场,只需考虑 U(H) 在 S(H) 上的正则作用的基本向量场以及与期望值函数 la(ρ)=Tr(aρ) 相关的梯度向量场,其中 a 是 H 上有界线性算子空间 B(H) 中的任意自伴元素,借助于所谓的 Bures-Helstrom 度量张量 [7-12]。这个例子提供了酉群 U(H)、S(H) 的 GL(H) - 齐次流形结构、Bures–Helstrom 度量张量和期望值函数之间的意外联系。然而,这并不是单调度量张量与一般线性群 GL(H) “相互作用”的唯一例子。事实上,在 [6] 中,还证明了 U(H) 正则作用的基本向量场以及与期望值函数相关的梯度向量场通过 Wigner–Yanase 度量
本文首先引入了模糊软度量空间的概念,然后定义了模糊软开球、模糊软有界集、模糊软序列收敛、模糊软连续函数从一个模糊软度量空间到另一个模糊软度量空间。本文的主要目的是研究这个空间,并研究模糊软度量空间的一些基本性质。
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,因为在代表经典粗粒化量子版本的完全正、保迹映射下,单调性是必须的 [ 35 , 40 ]。从无穷小角度来看,作用量 φ 可以用 S + 上的基本矢量场来描述,从而提供酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(第 2 节将对此进行详细介绍),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u(H) 是 H 上有界线性算子空间 B(H) 的李子代数,具有由线性算子之间的交换子 [·,·] 给出的李积。特别地,可以证明 B(H)(具有 [·,·])同构于 U(H) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL(H) 的李代数。此外,已知 [9,15,26,27] GL(H) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
在1990年代后期,[2]中的格罗莫夫(M. gromov)引入了拓扑动态系统(x,φ)的平均维度概念(x是一个紧凑的拓扑空间,φ是x上的连续映射),也就是topicalogical熵,拓扑熵,在异偶联下是不变的。在[11]中,Lindenstrauss和Weiss表明,如果X的拓扑维度为有限,则平均维度为零。他们举了一些示例,其中平均维度为正。例如,他们证明了([0,1] m)z,σ的平均维度,其中σ是([[0,1] m)Z上的两边完整移位图(具有无限拓扑熵),等于M,并且任何非客气因子的任何非客气因子的([[0,1] m)z,σ具有正平均值。给定一个动力学系统(x,φ),与此类系统有关的一个有趣的问题是:在哪些条件下,可以将这种系统嵌入Shift
摘要。我们对基于度量空间中数据进行测试组差异的一些最近类似方差分析的程序进行了审查,并提出了新的此类程序。我们的统计量来自经典的莱文测试,以检测分散差异。它仅使用数据点的成对距离,并且可以在数据空间中barycenters(“广义均值”)计算的情况下快速,精确地计算出来,只有通过近似值甚至不可行)很慢。它也满足渐近正态性。我们根据1向ANOVA设置中的空间点模式和图像数据讨论了各种过程的相对优点。作为应用程序,我们在矿物质漏斗过程中的数据集和马德里的局部害虫计数的数据集上执行1-和2向方差分析。关键词和短语:方差分析,图像,莱文测试,度量空间,空间点模式。
摘要。在机器学习研究的不断发展的景观中,可信赖性的概念受到关注的数据和模型的关键考虑。但是,缺乏普遍同意对可信赖性概念的定义提出了一个巨大的挑战。缺乏这种定义会阻碍有意义的交换和评估信任的比较。使事情变得更糟,目前几乎不可能提出可量化的度量。因此,机器学习社区无法将术语运行,而不是其当前状态,这是一个几乎不可抓的概念。这一贡献是第一个提出评估机器学习模型和数据集的信任度的度量标准。我们的薯条信任得分基于五个关键方面,我们理解是机器学习信任的基础构建基础 - 公平,稳健性,完整性,可解释性和安全性。我们通过三个数据集和三个模型评估了我们的指标,从而探讨了该指标的可靠性,通过吸引了10位机器学习研究人员的专业知识。结果强调了我们方法的有用性和可靠性,看到参与者评级之间的分离重叠。
*定义的小地点(i)用于住宅:所提供的住宅数量在一个不到一公顷的区域的站点上是一到九个包含的,或者不知道要提供的房屋数量的地点小于0.5公顷; (ii)对于非住宅:要创建的地板空间少于1,000平方米或场地面积小于一公顷。