摘要。在机器学习研究的不断发展的景观中,可信赖性的概念受到关注的数据和模型的关键考虑。但是,缺乏普遍同意对可信赖性概念的定义提出了一个巨大的挑战。缺乏这种定义会阻碍有意义的交换和评估信任的比较。使事情变得更糟,目前几乎不可能提出可量化的度量。因此,机器学习社区无法将术语运行,而不是其当前状态,这是一个几乎不可抓的概念。这一贡献是第一个提出评估机器学习模型和数据集的信任度的度量标准。我们的薯条信任得分基于五个关键方面,我们理解是机器学习信任的基础构建基础 - 公平,稳健性,完整性,可解释性和安全性。我们通过三个数据集和三个模型评估了我们的指标,从而探讨了该指标的可靠性,通过吸引了10位机器学习研究人员的专业知识。结果强调了我们方法的有用性和可靠性,看到参与者评级之间的分离重叠。
主要关键词