摘要 - 基于给定的一组输入和输出,机器学习(ML)和隐窝分析具有创建功能的有趣共同目标。但是,这样做的方法和方法之间的方法和方法在两个字段之间差异很大。在本文中,我们探讨了整合来自ML领域的知识,以提供对Crypsystems的经验评估。特别是我们利用信息理论指标来执行基于ML的分布估计。我们提出了ML算法的两种新颖应用,可以在已知的明文设置中应用,以对任何密码系统进行隐式分析。我们使用共同信息神经估计来计算密码系统的相互信息泄漏以及二进制跨熵分类,以模拟在选定的明文攻击(CPA)下无法区分的性。这些算法可以很容易地在审核设置中应用,以评估Crypsystem的鲁棒性,结果可以提供有用的经验结合。我们通过经验分析几种加密方案来评估方法的功效。此外,我们将分析扩展到基于网络编码的新型密码系统,并为我们的算法提供其他用例。我们表明,我们的分类模型正确地识别了非IND-CPA安全的加密方案,例如DES,RSA和AES ECB,具有很高的精度。它还标识了具有故障参数的CPA-SECURE密码系统中的故障,因此AES-CTR的相反版本减少了。我们还得出结论,使用算法,在大多数情况下,使用较小的计算能力的较小尺寸的神经网络可以识别加密系统中的脆弱性,从而快速检查加密系统的理智,并帮助决定是否要花费更多资源来部署能够破坏密码系统的较大网络。
主要关键词