线粒体被称为细胞的“动力工厂”,在非癌细胞的能量产生、细胞维持和干细胞调节中发挥着关键作用。尽管线粒体非常重要,但使用药物输送系统靶向线粒体仍面临重大挑战,因为存在多种障碍,包括细胞摄取限制、酶降解和线粒体膜本身。此外,目标器官中的障碍以及由网状内皮系统等生理过程形成的细胞外障碍,会导致用于线粒体药物输送的纳米粒子被快速消除。克服这些挑战导致了各种策略的发展,例如使用细胞穿透肽进行分子靶向、基因组编辑和基于纳米粒子的系统,包括多孔载体、脂质体、胶束和 Mito-Porters。多孔载体由于其孔径大、表面积大和易于功能化而成为特别有前途的药物输送系统候选者,可用于靶向线粒体。根据孔径,它们可分为微孔、中孔或大孔,并根据尺寸和孔隙均匀性分为有序或无序。使用多孔载体靶向线粒体的方法有多种,例如用聚乙二醇 (PEG) 进行表面改性、加入三苯基膦等靶向配体以及用金纳米粒子或壳聚糖覆盖孔隙以实现受控和触发的药物输送。光动力疗法是另一种方法,其中载药多孔载体产生活性氧 (ROS) 以增强线粒体靶向性。功能化多孔二氧化硅和碳纳米粒子的形式取得了进一步的进展,它们已证明具有有效向线粒体输送药物的潜力。本综述重点介绍了利用多孔载体的各种方法,
有效的蜂窝通信对于大脑调节肌肉收缩,记忆形成和回忆,决策和任务执行等多种功能至关重要。通过电气和化学信使(包括电压门控通道和神经递质)的快速信号传导来促进这种通信。这些使者通过传播动作电位和中介突触传播来引起广泛的反应。钙涌入和外排对于释放神经递质和调节突触传播至关重要。与氧化磷酸化有关的线粒体和能量产生过程也与内质网相互作用,以存储和调节细胞质钙水平。不同细胞类型中线粒体的数量,形态和分布根据能量需求而变化。线粒体损伤会导致过量的活性氧(ROS)产生。mitophagy是一个选择性过程,它通过自噬体 - 散糖体融合靶向并降解损坏的线粒体。线粒体中的缺陷会导致ROS和细胞死亡的积累。许多研究试图表征神经退行性疾病中线粒体功能障碍与钙失调之间的关系,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病,黑肿瘤疾病,肌萎缩性侧面硬化症,脊髓灰质球脑性脑脑性无动脉症,染色。减少线粒体损伤和积累的介入策略可以作为治疗目标,但是需要进一步的研究来揭示这一潜力。本综述提供了与线粒体在各种神经元细胞中有关的钙信号传导的概述。它严格检查了最新发现,探讨了线粒体功能障碍可能在多种神经退行性疾病和衰老中起的潜在作用。此外,评论还确定了知识中现有的差距,以指导未来研究的方向。
胰腺癌具有促结缔组织增生性,具有高度间质样基质,有利于缺氧,诱导上皮-间质转化 (EMT) 并导致肿瘤细胞转移 (7)。胰腺癌被致密的纤维化基质包围,基质内含有致密的团块、胰腺星状细胞 (PSC) 和细胞外基质。基质创造了一个缺氧微环境,在促进胰腺癌细胞发育和诱导肿瘤细胞转移方面发挥重要作用 (8)。例如,癌细胞通过改变线粒体功能来适应缺氧,以实现最佳代谢和能量供应。低氧水平可诱导线粒体还原羧化并在癌细胞中产生活性氧 (ROS),从而诱导胰腺癌的快速发展 (9)。
了解线粒体的生物合成和功能及其在植物生命周期中的关键信号通路 线粒体为植物生长提供能量和基本构件,从发育的最初阶段到衰老和细胞死亡。线粒体还能帮助植物应对不利的生长条件和压力,这些因素会导致农业生产中大规模减产。我们努力更好地了解线粒体的生物合成和功能及其复杂的潜在信号通路。这为提高能量效率和抗逆性奠定了基础,从而使植物更“聪明”。我们的目标是确定整个生命周期中线粒体与植物细胞内其他细胞器(如细胞核和叶绿体)通讯的关键调节因子和信号通路。这种方法涉及在表型和分子水平上对突变植物和转基因植物进行鉴定和表征。我们还分析了野生型和转基因株系的应激反应,以确定使植物更耐旱或淹水的线粒体成分。这项工作包括突变体筛选、使用 RNA 测序和生化方法的全基因组转录组学。整合这些方法的结果将有助于我们了解所涉及的分子机制,并确定开发具有
摘要:线粒体在肿瘤发生中起着关键作用,是癌症治疗的最重要靶点之一。虽然将药物输送到线粒体的最有效方法是将它们共价连接到亲脂性阳离子,但游离药物的体内输送仍然是一个关键的瓶颈。在此,我们报告了一种针对线粒体的金属有机骨架 (MOF) 的设计,它大大提高了模型癌症药物的功效,与游离药物相比将所需剂量降低到 1% 以下,与非靶向 MOF 相比降低到 10% 左右。使用从显微镜到转录组学的整体方法评估该系统的性能。用靶向 MOF 系统处理的 MCF-7 细胞的超分辨率显微镜揭示了重要的线粒体形态变化,这些变化与孵育后 30 分钟内的细胞死亡明显相关。细胞的全转录组分析表明,使用 MOF 系统处理后,基因表达发生了广泛变化,特别是在对细胞生理学产生深远影响并与细胞死亡相关的生物过程中。我们展示了如何将 MOF 靶向线粒体代表了开发新药物输送系统的宝贵策略。■ 简介
药物输送技术的进步使得各种货物(如小分子药物、核酸和蛋白质)能够被封装,并能够靶向特定的组织和细胞类型,以提高输送效率。1-4此外,近年来,这一策略得到了进一步发展,可以控制输送载体的细胞内运输行为,以靶向特定的细胞器。5-8适当的细胞器靶向性可以增强治疗效果,并最大限度地减少不利的副作用。线粒体是亚细胞器中很有希望的靶点,因为它们通过产生三磷酸腺苷(ATP)作为能量来源、控制活性氧(ROS)和钙离子水平以及调节细胞凋亡,在细胞代谢中发挥着重要作用。9、10线粒体的这些关键功能不仅由核 DNA 而且还由线粒体 DNA(mtDNA)中编码的重要蛋白质支持。 11、12 人类的线粒体 DNA 是多拷贝、环状和双链的,编码 37 个基因;22 种转移 RNA (tRNA)、13 种对氧化磷酸化诱导的 ATP 合成至关重要的蛋白质和 2 种核糖体 RNA (rRNA)。13、14 与核 DNA 不同,线粒体 DNA 不受组蛋白包装和保护,而是与解旋酶形成类核 15,并长期暴露于线粒体产生的 ROS,因此容易受到突变的影响,这种风险会随着时间的推移而增加
图 3 | MCF-7 细胞的 SIM 成像。a,未经处理的细胞和用 cal@(DCA 5 - UiO-66) 和 cal-TPP@(DCA 5 -UiO-66) 处理 8 小时的细胞的图像;线粒体为红色,MOF 为绿色,细胞核为蓝色;白色箭头表示线粒体。b,使用 Cell Profiler 软件显示线粒体形状分析的图像。上行,未经处理的细胞;下行,与 cal-TPP@(DCA 5 -UiO-66) 孵育 8 小时后的细胞。c,不同处理对线粒体偏心率的影响。结果显示平均偏心率至少为 200 个线粒体。误差线表示平均值的标准误差。使用单因素方差分析和 Tukey 多重比较检验来评估统计学显着性。
线粒体自噬是细胞选择性清除功能失调的线粒体的过程,控制着线粒体的数量和质量。线粒体自噬失调可能导致受损线粒体的积累,在肿瘤的发生和发展中起着重要作用。线粒体自噬包括由PINK1 / Parkin介导的泛素依赖性途径和由线粒体自噬受体(包括NIX,BNIP3和FUNDC1)介导的非泛素依赖性途径。细胞线粒体自噬广泛参与多种细胞过程,包括代谢重编程,抗肿瘤免疫,铁死亡以及肿瘤细胞与肿瘤微环境之间的相互作用。并且细胞线粒体自噬还调节肿瘤的增殖和转移,干细胞,化学抗性,对靶向治疗和放射治疗的抵抗力。在这篇综述中,我们总结了线粒体自噬的潜在分子机制,并讨论了线粒体自噬在不同肿瘤环境中的复杂作用,表明它是线粒体自噬相关抗肿瘤治疗的一个有希望的靶点。