DNA或脱氧核糖核酸是人类和几乎所有其他生物的遗传物质。一个人体内的几乎每个细胞都具有相同的DNA。大多数DNA位于细胞核(称为核DNA)中,但在线粒体中也可以发现少量DNA(其中称为线粒体DNA或mtDNA)。线粒体是细胞内的结构,可将能量从食物转化为细胞可以使用的形式。
摘要:尽管被称为我们细胞的简单动力室,但线粒体令人惊讶地复杂。作为半自主细胞器,线粒体必须灵活适应细胞环境中的动态变化。大约75年前的开创性工作表明,磷酸化构成了这种调节范式,最初发现是从线粒体基质中微调丙酮酸脱氢酶的活性。除了这一早期发现之外,磷酸化影响线粒体的程度在很大程度上尚未得到探索。我们注意到线粒体容纳多个蛋白质磷酸酶,这表明,蛋白质去磷酸化最少可以增强细胞器功能。我们的工作表明,在线粒体磷酸酶敲除时,数百个磷酸化事件可重复增加,这表明这些细胞器中存在广泛但不足的调节网络。最近的一个例子涉及线粒体磷酸酶PPTC7,该磷酸酶PPTC7在被淘汰时会在小鼠中引起完全渗透的致死性 - 一种引人注目的表型表明,适当调节的线粒体磷酸化对于哺乳动物发育至关重要。我们最近发现,PPTC7定位于外部和内部线粒体室,以动态介导基于磷酸化的调节线粒体功能从“内而外”。在本演讲中,我不仅概述了我们最近了解基于磷酸化的线粒体功能的工作,而且还将讨论我们对这些细胞器的发现如何塑造了我的科学旅程。
先天免疫是抵御病毒的第一道防线,其中线粒体在诱导干扰素 (IFN) 反应中起着重要作用。BHRF1 是一种在 Epstein-Barr 病毒再激活过程中表达的多功能病毒蛋白,它会调节线粒体动力学并破坏 IFN 信号通路。线粒体是一种可移动的细胞器,借助细胞骨架,特别是微管 (MT) 网络,它可以在细胞质中移动。微管会经历各种翻译后修饰,其中包括微管蛋白乙酰化。在本研究中,我们证明 BHRF1 会诱导微管过度乙酰化以逃避先天免疫。事实上,BHRF1 的表达会诱导缩短的线粒体聚集在细胞核旁边。这种“线粒体聚集体”围绕着丝粒组织,其形成依赖于微管。我们还观察到 α-微管蛋白乙酰转移酶 ATAT1 与 BHRF1 相互作用。使用 ATAT1 敲低或不可乙酰化的 α-微管蛋白突变体,我们证明了这种高乙酰化对于线粒体聚集体的形成是必需的。在 EBV 重新激活期间也观察到了类似的结果。我们研究了导致线粒体聚集的机制,并确定了运动蛋白是线粒体聚集所需的马达。最后,我们证明了 BHRF1 需要 MT 高乙酰化来阻止 IFN 反应的诱导。此外,MT 高乙酰化的丧失会阻止自噬体定位到靠近线粒体聚集体的位置,从而阻碍 BHRF1 启动线粒体自噬,而线粒体自噬对于抑制信号通路至关重要。因此,我们的结果揭示了 MT 网络及其乙酰化水平在诱导亲病毒线粒体自噬中的作用。
srt-015是一种新型的小分子抑制剂,凋亡信号调节激酶1(Ask1)。ask1是一种无处不在的氧化还原敏感激酶,被包括氧化应激和脂肪毒性的病理刺激激活1。ask1位于细胞质和线粒体中,通常由抗氧化剂蛋白(包括硫氧还蛋白1)和线粒体2中的硫氧还蛋白2结合和抑制。如下所示,不同的应激刺激会诱导活性氧(ROS),从而导致硫氧还蛋白与Ask1的氧化和解离,从而导致Ask1激活。反过来,激活的ASK1诱导JNK和p38的磷酸化和激活下游激酶Cascades 3导致凋亡,炎症和纤维化,这是NASH的所有关键组成部分。
线粒体是一个选择性的过程,通过该过程,线粒体受损或功能障碍的线粒体被专门针对细胞降解和去除。它可以防止功能失调的线粒体的积累,否则可以导致细胞应激和疾病,例如神经退行性疾病和某些癌症。泛素化标志着自噬机械的蛋白酶体或溶酶体降解的蛋白质。泛素特异性肽酶30(USP30)已被确定为线粒体的负调节剂。它通过从线粒体表面上的蛋白质中去除泛素标签来抵消泛素化的过程,并防止导致细胞应激的受损或功能障碍的线粒体降解。抑制USP30活性已被证明可以促进线索和管理某些神经退行性疾病的潜在方法。 尽管线粒体和线粒体功能障碍受损与代谢相关的脂肪肝病的发病机理(MAFLD)有关,但对USP30在MAFLD病理生理学或代谢性疾病的病理生理学中的研究仍处于早期阶段。 结果,我们试图彻底评估文献,以确定USP30参与MAFLD的病理生理学,以及调节USP30活动是否可能是管理MAFLD的治疗策略。抑制USP30活性已被证明可以促进线索和管理某些神经退行性疾病的潜在方法。尽管线粒体和线粒体功能障碍受损与代谢相关的脂肪肝病的发病机理(MAFLD)有关,但对USP30在MAFLD病理生理学或代谢性疾病的病理生理学中的研究仍处于早期阶段。结果,我们试图彻底评估文献,以确定USP30参与MAFLD的病理生理学,以及调节USP30活动是否可能是管理MAFLD的治疗策略。
摘要 线粒体含有一个独立的基因组,称为线粒体 DNA (mtDNA),其中包含必需的代谢基因。尽管 mtDNA 突变发生频率很高,但它们很少被遗传,这表明生殖系机制限制了它们的积累。为了确定生殖系 mtDNA 是如何调控的,我们研究了秀丽隐杆线虫原始生殖细胞 (PGC) 中 mtDNA 数量和质量的控制。我们发现 PGC 结合多种策略来产生 mtDNA 数量的低点,方法是将线粒体分离成叶状突起,这些突起会被相邻细胞蚕食,同时通过自噬消除线粒体,使整体 mtDNA 含量降低两倍。当 PGC 离开静止状态并分裂时,mtDNA 会复制以维持每个生殖系干细胞约 200 个 mtDNA 的设定点。尽管同类相食和自噬会随机消除线粒体 DNA,但我们发现,独立于 Parkin 和自噬的激酶 PTEN 诱导激酶 1 (PINK1) 优先减少突变线粒体 DNA 的比例。因此,PGC 采用并行机制来控制种系线粒体 DNA 创始群体的数量和质量。
人们早已认识到,癌细胞严重依赖于重新编程的代谢模式,这种模式可以实现强劲且异常高的细胞增殖水平。由于线粒体是细胞代谢活动的枢纽,因此有理由提出,这些细胞器内的途径可以形成靶标,这些靶标可以被操纵以损害癌细胞致病的能力。然而,线粒体具有高度多功能性,并且仍在揭示各种机制互连,以便在癌症治疗中充分发挥针对线粒体的潜力。在这里,我们旨在强调调节线粒体动力学以针对癌细胞中的关键代谢或凋亡途径的潜力。线粒体裂变和融合在不同癌症环境中发挥着不同的作用。针对介导线粒体动力学的因素可能与氧化磷酸化受损直接相关,氧化磷酸化对于维持癌细胞生长至关重要,也可以改变对化疗化合物的敏感性。这一领域仍然缺乏统一的模型,但进一步的研究将更全面地绘制潜在的分子机制,以便根据这些途径制定更合理的治疗策略。
给出2个小数点的答案。百分比差= ....................................%%[1](iii)解释线粒体数量少的一种影响对异常精子细胞活性的影响。.................................................................................................................................................. .................................................................................................................................................. .................................................................................................................................................. ............................................................................................................................................. [2]
线粒体是细胞的动力源,参与细胞稳态的各种过程,尤其是能量代谢。线粒体的形态是其功能的关键指标,指线粒体的融合和分裂。在这里,我们进行了结构照明显微镜 (SIM) 来测量活细胞中的线粒体形态。得益于其纳米级分辨率,这种基于 SIM 的策略可以高灵敏度地量化线粒体的融合和分裂。此外,由于 2 型糖尿病 (T2DM) 是由能量底物利用障碍引起的,因此该策略有可能通过分析胰岛素抵抗 (IR) 细胞的线粒体形态来研究 T2DM。通过 SIM,我们发现 IR MRC-5、LO2、FHs 74 Int 和 HepG2 细胞中的线粒体裂变增加,但在具有高侵袭能力的 IR Huh7 细胞中没有增加。此外,我们发现二甲双胍可以抑制 IR 细胞中的线粒体裂变,而索拉非尼可以促进 HepG2 癌细胞中的线粒体融合,尤其是在那些 IR 细胞中。总之,线粒体裂变与 2 型糖尿病有关,具有高侵袭能力的癌细胞可能具有更强的抗能量代谢紊乱能力。此外,二甲双胍和索拉非尼在癌症中的药效学可能与抑制线粒体裂变有关,尤其是对于 2 型糖尿病患者。
