mngie是一种罕见的遗传疾病,是由胸苷磷酸化酶(TYMP)基因1中的突变引起的。这会导致核苷的积累,线粒体损伤以及进行性胃肠道和神经功能障碍,导致40岁之前死亡。没有既定的治疗方法。肝移植恢复核苷水平,但与并发症有关。腺相关病毒(AAV)基因疗法在MNGIE动物模型中成功,并且可以提供有吸引力的治疗方法。尽管如此,它尚未在人类中进行测试。
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月3日。; https://doi.org/10.1101/2024.04.04.04.04.04.04.04.04.04.04.02.587827 doi:biorxiv Preprint
发育时机的变化是器官形状和功能进化的重要因素。这对于人脑发育尤其引人注目,与其他哺乳动物相比,在大脑皮层水平上延长了大量的延长,导致脑新脑。在这里,我们回顾了最新发现,这些发现表明线粒体和代谢有助于皮质神经元发育节奏的物种差异。线粒体显示特定物种的发育时间线和代谢活动模式,与神经元成熟的速度高度相关。增强人皮质神经元中的线粒体活性会导致其加速成熟,而其还原导致小鼠神经元的成熟率降低。与其他全球和基因特异性机制一起,线粒体因此充当神经元发育节奏的细胞沙漏,因此可能有助于人脑本体发育的物种特异性特征。
研究项目 - 确定DRPLA中的线粒体代谢:一种可能的新型治疗方法,由Andrea和Paul Compton的捐赠使该项目成为可能,他们的儿子受Drpla影响,并创造了一个名为Curedrpla的基金会。首席研究人员:伦敦大学学院(英国)的Paola Giunti教授和Rosella Abeti博士以及来自英国国王学院(英国)的Manolis Fanto博士。科学摘要:牙齿果核糖萎缩症(Drpla)是一种罕见的常染色体显性神经退行性疾病,其特征在于小脑共济失调,癫痫,肌阵挛,肌阵挛,浮力术和痴呆症。目前,这种类型的疾病尚无治愈方法。我们的研究首先旨在表征细胞模型中Drpla的神经病理生理学,其次是验证药物学方法以阻止该疾病的进展,最终改善了患者的生活质量。先前对DRPRA患者的研究表明,线粒体三磷酸腺苷的产生降低。因此,支持扩展的PolyQ的潜在直接效应,从而导致线粒体功能障碍。此外,研究其他相关疾病的研究,例如脊椎小脑共济失调(SCAS)和亨廷顿氏病(HD),与DRPLA共享表型相似性,证明了线粒体功能障碍在发病机理中的作用。这些包括线粒体电子传输链复合活动中的缺陷。线粒体功能障碍在神经退行性和癫痫病中都进行了很好的研究,均参与DRPLA。我们的策略是利用先前获得的知识来开发更有效的药理学干预措施来治疗Drpla。先前关于癫痫和弗里德里希共济失调(FRDA;一种罕见的神经退行性疾病)的研究表明,核因子红系2相关因子2(NRF-2)诱导剂可以保护细胞免受氧化应激和线粒体功能障碍的影响,这是神经元死亡的主要原因。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2024年3月21日发布。 https://doi.org/10.1101/2024.03.19.24304372 doi:medrxiv preprint
核和线粒体之间的协调对于细胞存活至关重要,因此在这两个细胞器之间在真核细胞演化上建立了许多通信途径。Organelle通信的一条途径是通过膜接触位点,由分子系tether形成的功能性配置。我们描述了原生动物弓形虫的新型核用膜接触位点。我们已经确定了发生在核孔隙的特定接触,并证明了核孔的成分与线粒体蛋白转运之间的相互作用,从而将它们作为分子因特斯强调。核孔或TOM转运成分TGNUP503或TGTOM40的遗传破坏会导致接触位点的减少,从而支持其潜在参与该系绳。TGNUP503耗竭进一步导致特定的线粒体形态和功能缺陷,从而支持核线粒体接触在介导其交流中的作用。通过两种古老的线粒体和核复合物之间相互作用形成的接触发现,为更好地理解真核生物中的线粒体核串扰奠定了基础。
使用宿主特异性细菌的微生物源跟踪(MST)和线粒体DNA(mtDNA)标记是一种有效的工具,可以识别环境水中粪便污染的来源。这项研究评估并更新了先前报道的七个宿主特异性细菌标记的性能(三个人,两个牛和两个特定于猪)。此外,评估了牛特异性牛MtDNA和猪特异性猪MTDNA标记物的性能,然后应用于日本Yamanashi县收集的河水样品的MST。我们收集了48个粪便源样品,包括原始缝纫,继发处理的污水,一种家庭废水处理罐的废水,猪粪便,猪废水和牛粪便,这些污水是使用宿主型螺旋体和mtdna标记进行了定量分析的。bachum和gyrb标记物(人类特异性),牛和牛mtDNA标记(牛特异性)以及猪2BAC和猪MTDNA标记(特异性)是表现最佳的标记。然后,将这些选定的标记物应用于MST,以鉴定在21个地点收集的59个河水样品中的粪便污染源。分别为至少一个人,牛和猪标记的20(95%),21(100%)和16个(76%)位点为阳性,这表明需要立即采取行动和监测以控制粪便污染。
线粒体都存在于除成熟的红细胞外的所有哺乳动物细胞中。线粒体由几种用于葡萄糖,脂肪酸,氨基酸和生物能途径的代谢途径,用于ATP合成,膜电位和活性氧的产生。在肝脏中,肝线粒体在肝脂肪变性中起关键作用,因为线粒体代谢产生乙酰辅酶A乙酰辅酶A,这是合成脂质和胆固醇的基础。线粒体内膜不可渗透代谢物,还原等效物以及磷酸盐和硫酸盐等小分子。因此,线粒体穿梭和载体起着这些代谢产物和分子在整个膜上的流入和外排的途径。这些班车和线粒体酶的信号调节在协调线粒体代谢以适应肝脏代谢应激中代谢途径的胞质部分方面起着关键作用。有趣的是,线粒体蛋白SH3结合蛋白5(SAB/ SH3BP5)和C-JUN N末端激酶(JNK)的相互作用在JNK持续激活JNK和磷酸化 - JNK(P-JNK)介导的Lipogenitication的激活途径中的持续激活中是关键作用。SAB的敲除或敲除可以防止或逆转肝脏脂肪变性,炎症和纤维化,以及改善的代谢不耐受和能量消耗。此外,阻塞SAB肽可防止棕榈酸诱导的P-JNK与SAB的相互作用并抑制线粒体生物能力,这意味着P-JNK对线粒体代谢的影响。本综述的重点是在代谢胁迫条件下线粒体代谢产物的流动以及线粒体和线粒体应激信号在肝脂肪变性中的贡献。