亨廷顿氏病(HD)主要影响大脑,导致混合运动障碍,认知能力下降和行为异常。它还引起涉及骨骼肌的外周表型。线粒体DYS功能已在HD模型的组织中报道,包括骨骼肌,以及来自HD患者的淋巴细胞和成纤维细胞浮雕。突变的亨廷顿蛋白(Muthtt)表达会损害线粒体质量控制并加速线粒体衰老。在这里,我们获得了新鲜的人类骨骼肌,这是一种有线后组织,自出生以来,在生理水平上表达突变的HTT等位基因,以及HTT CAG重复膨胀突变携带者的原代细胞系,并匹配健康的志愿者,以检查人类HD中是否存在这种线粒体表型。使用超深线粒体DNA(mtDNA)测序,我们显示了影响氧化性PHOS磷酸化的mtDNA突变的积累。组织蛋白质组学表明MTDNA维持的障碍,线粒体生物发生的增加,氧化磷酸化效率较低(较低的复合物I和IV活性)。在全长muthtt中表明了原代人细胞系,裂变诱导的线粒体应激导致正常的线粒体。相比之下,高水平的N末端Muthtt片段的Ex压缩促进了线粒体裂变,导致线粒体裂变较慢,动态线粒体较低。由于体细胞核HTT CAG不稳定性引起的高水平Muthtt片段的表达会影响线粒体网络动力学和线粒体,从而导致致病性mtDNA突变。我们表明,突变体HTT的终生表达引起的线粒体表型,指示新鲜的有丝分裂后人类骨骼肌的mtDNA不稳定性。因此,基因组不稳定性可能不限于核DNA,在核DNA中,它会导致在诸如纹状体神经元之类的特别脆弱细胞中HTT CAG重复长度的体细胞扩张。除了针对因果突变的努力外,促进线粒体健康可能是治疗HD等DNA不稳定性疾病的互补性层次。
抽象背景肺腺癌(LUAD)是一种高度异质性疾病,对准确的预后预测构成了重大挑战。线粒体在真核细胞的能量代谢中起着核心作用,并可能影响程序性细胞死亡(PCD)机制,这对于肿瘤发生和癌症的进展至关重要。然而,线粒体功能与pCD之间相互作用的预后意义需要进一步研究。方法我们使用机器学习分析了来自七个全球队列中1231名LUAD患者的数据,以开发与线粒体相关的PCD签名(MPCD)。使用六种免疫疗法队列(LUAD,黑色素瘤,透明细胞肾细胞癌; n = 935)和21种肿瘤类型的PAN-CACTER队列进行验证。内部luad组织队列(n = 100)证实了核苷双磷酸激酶4(NME4)的预后意义。体内和体外实验探索了NME4在免疫排除中的作用。结果,MPCD在LUAD患者的预后表现出强烈的预测性能,超过了先前发表的LUAD特征的114个。此外,MPCD有效地预测了免疫疗法患者的结局(包括患有LUAD,黑色素瘤和透明细胞肾细胞癌的患者)。从生物学上讲,MPCD与免疫特征显着相关,高MPCD组表现出降低的免疫活性和冷肿瘤的趋势。nMe4是MPCD中的一个关键基因(相关= 0.55,p <0.05),与高表达的LUAD患者的预后较差有关,特别是在CD8沙漠表型中,通过我们的内部同学验证。多重免疫荧光证实了NME4与免疫细胞(例如CD3+ T细胞和CD20+ B细胞)之间的空间共定位和排除关系。进一步的实验表明,NME4在体外和体内调节了LUAD细胞的增殖和侵袭。重要的是,抑制NME4增加了CD8+ T细胞的丰度和活性,并增强了体内抗编程细胞死亡蛋白-1疗法的抗肿瘤免疫力。结论MPCD为个别LUAD患者提供个性化的风险评估和免疫疗法干预措施。nme4是MPCD中的关键基因,已被确定为一种新型癌基因
引言急性心肌梗死 (AMI) 是全球范围内重大的公共健康问题、心力衰竭 (HF) 的主要原因和主要死亡原因 (1–3)。AMI 患者的标准治疗是直接经皮冠状动脉介入治疗 (PPCI),以再灌注并恢复缺血心肌的氧合血流 (4, 5)。然而,PPCI 却伴有再灌注损伤,这会加剧组织损伤并增加心肌细胞死亡,导致可挽救的心肌减少。据估计,再灌注损伤约占 AMI 后最终梗死的 50% (4, 6)。尽管经过数十年的研究,但尚无任何药物干预措施成功地转化为常规临床实践以减轻缺血-再灌注 (I/R) 损伤的有害影响 (7–9)。因此,减轻心肌 I/R 损伤仍然是心血管医学中尚未满足的需求,以防止缺血事件后发展为慢性 HF。I/R 的潜在机制复杂且多因素,但动物模型数据表明,缺血性心肌细胞内的线粒体功能障碍是关键因素(10-12)。在 I/R 损伤期间,线粒体功能对心肌细胞维持细胞能量、氧化还原和活力至关重要(13)。I/R 损伤引起的线粒体缺陷可导致线粒体介导的细胞凋亡,包括线粒体膜电位受损(ΔΨ)、钙超载和氧化应激(14, 15)。这被认为是由于 I/R 期间氧气和营养物质供应不连续而导致代谢失衡所致(16, 17)。了解代谢
©作者2024。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by-nc-nd/4。0/。
我们使用过滤器 -1 和 -2 对原始 ReDeeM 数据进行了重新分析,结果表明这两个过滤器得出的结果大相径庭。两个过滤器之间的连接指标和由此产生的系统发育树存在很大差异,这一事实进一步证实了我们最初的担忧,即人工 mtDNA 变体(现在已被过滤器 -2 移除)仍然是所谓系统发育信号的重要驱动因素。反复提出的 k-NN 分析在设计上存在缺陷,不能被视为对 ReDeeM 方法的验证,也不能为人工变体的有效性提供支持。没有考虑影响单分子支持变体对克隆和系统发育推断的稳健性的其他混杂因素。作者认为,通过强调观察预期的 mtDNA 突变特征谱,仅由一个分子支持的变体仍然对系统发育推断具有参考价值。然而,我们对污染率的估计表明,环境 mtDNA 是 ReDeeM 方法的一个显著混杂因素。值得注意的是,污染率明显高于之前报道的 mtscATAC-seq 4,这需要进一步研究,但仅支持这样一种观点,即低分子拷贝数支持的 mtDNA 变体不应被视为系统发育推断。
原理:隧道纳米管(TNT)介导的线粒体转运对于多细胞生物的发展和维持至关重要。尽管许多研究强调了这一过程在生理和病理环境中的重要性,但对基本机制的了解仍然有限。这项研究的重点是岩石抑制剂Y-27632在视网膜色素上皮(RPE)细胞中调节TNT形成和线粒体转运中的作用。方法:两种类型的ARPE19细胞(一种视网膜色素上皮细胞系)具有明显的线粒体荧光标记,并与岩石抑制剂Y-27632共同培养并处理。通过细胞骨架染色和活细胞成像评估了纳米管的形成和线粒体的转运。线粒体功能障碍是通过光损伤诱导的,以建立模型,而线粒体功能是通过测量氧气消耗速率评估的。通过详细分析进一步阐明了Y-27632对细胞骨架和线粒体动力学的影响。结果:Y-27632治疗导致纳米管的形成增加并增强了ARPE19细胞之间的线粒体转移,即使在暴露于光诱导的损伤之后。我们对细胞骨架和线粒体分布变化的分析表明,Y-27632通过影响细胞骨架重塑和线粒体运动来促进纳米管介导的线粒体转运。结论:这些结果表明,Y-27632具有通过视网膜色素上皮中的隧道纳米管增强线粒体转移的能力,同样预测,岩石抑制剂可以通过在未来的视网膜色素上促进线粒体转运来实现其治疗潜力。
线粒体的结构和功能之间存在密切的相互作用。要理解这种复杂的关系,需要先进的成像技术来捕捉线粒体的动态特性及其对细胞过程的影响。然而,大部分关于线粒体动力学的研究都是在单细胞生物或体外细胞培养中进行的。在这里,我们介绍了一种用于实时成像秀丽隐杆线虫线粒体形态的新型遗传工具,以满足研究活体完整多细胞生物内细胞器动力学的先进技术的迫切需求。通过全面的分析,我们将我们的工具与现有方法直接进行比较,展示它们在可视化线粒体形态方面的优势,并对比它们对生物体生理学的影响。我们揭示了传统技术的局限性,同时展示了我们的方法的实用性和多功能性,包括内源性 CRISPR 标签和异位标记。通过提供根据实验目标选择最合适工具的指南,我们的工作推动了秀丽隐杆线虫的线粒体研究,并增强了不同成像模式的战略整合,以全面了解生物体内的细胞器动力学。
1个线粒体研究小组,转化和临床研究研究所,纽卡斯尔医学科学学院,纽卡斯尔,纽卡斯尔,英国泰恩河2号,2 2号应用科学系,诺森比亚大学健康与生命科学系,纽卡斯尔,纽卡斯尔,泰恩河畔泰恩河畔泰恩河,英国泰恩河畔泰恩河畔泰恩河畔泰恩河畔泰恩河,33110,美国华盛顿州。神经科学,约翰·范·盖斯特脑维修中心,剑桥大学,剑桥,英国5号5号功能蛋白质组学中心,医学院,高斯大学,60590德国法兰克福60590年,德国6号法兰克福大学6个心血管生理学研究所Anichstr。35,A-6020 Innsbruck,奥地利,奥地利Innsbruck 8线粒体研究小组,Biosciences Institute,医学科学学院,纽卡斯尔大学,纽卡斯尔,英国纽卡斯尔9德国心血管研究中心(DZHK),德国伙伴莱茵疗法学院,医学院10次,伙伴莱茵疗法,莫雷克斯·布鲁斯·弗兰克·布鲁克斯特·莫尔科克尔·布劳斯特·布劳克斯·布劳斯特·洛瓦克斯·洛瓦斯特·弗兰克。 63110,美国11号华盛顿大学医学院,圣路易斯,密苏里州圣路易斯,美国63110
摘要 铁硫 (Fe-S) 簇是普遍存在的无机辅因子,是许多细胞必需途径所必需的。由于它们不能从环境中清除,因此 Fe-S 簇在细胞区室(如顶质体、线粒体和细胞质)中从头合成。细胞质 Fe-S 簇生物合成途径依赖于线粒体途径中间体的运输。一种称为 ABCB7 的 ATP 结合盒 (ABC) 转运蛋白在许多常见研究的生物体中负责这一作用,但它在医学上重要的顶复门寄生虫中的作用尚未被研究。在这里,我们识别并描述了一种弓形虫 ABCB7 同源物,我们将其命名为 ABCB7-like (ABCB7L)。基因耗竭表明它对寄生虫的生长至关重要,并且它的破坏会触发部分阶段转换。敲除系的表征突出了细胞质和细胞核 Fe-S 蛋白的生物合成缺陷,导致蛋白质翻译和其他途径(包括 DNA 和 RNA 复制和代谢)出现缺陷。我们的工作为广泛保留 Fe-S 簇生物合成中线粒体和细胞质途径之间的联系提供了支持,并揭示了其对寄生虫生存的重要性。
线粒体融合和裂变伴随着压力和代谢需求改变的适应性反应。内膜融合和CRISTAE形态发生取决于视觉萎缩1(OPA1),它以不同的同工型表达,并从膜结合的裂解,长到可溶的短形式。在这里,我们通过生成仅表达一种可裂解的OPA1同工型或不可裂解的变体来分析OPA1同工型和OPA1处理的物理学作用。我们的结果表明,单个可裂解或不可裂解的OPA1同工型的表达可保留胚胎发育和成年小鼠的健康。OPA1处理在代谢和热应力下是可分配的,但可以延长寿命,并预防缺乏OXPHOS缺陷COX10 - / - 小鼠中的线粒体心脏肌病。从机械上讲,OPA1处理的损失会破坏线粒体生物发生和线粒体之间的平衡,从而抑制了Cox10 - / - 心脏中心脏肥大的生长。我们的结果突出了OPA1加工,线粒体动力学和心脏肥大的代谢的关键调节作用。