摘要 细胞转录本编码了有关细胞身份和疾病状态的重要信息。响应 RNA 生物标志物而激活 CRISPR 有可能以时空精度控制 13 CRISPR 活性。这将能够将 CRISPR 活性限制在表达目标 RNA 生物标志物的特定细胞类型,同时防止其他细胞中出现不必要的活性。在这里,我们提出了一个简单而具体的平台,用于通过工程化脓性链球菌 Cas9 单向导 RNA (sgRNA) 来调节响应 RNA 检测的 CRISPR 活性。sgRNA 被设计成折叠成复杂的二级结构,在基态下抑制其活性。识别互补 RNA 后,工程化的 sgRNA 19 被激活,使 Cas9 能够发挥其功能。我们的方法使 CRISPR 20 在 HEK293T 细胞和斑马鱼胚胎中响应 RNA 检测而激活。迭代 21 设计优化允许开发用于生成能够检测所选 RNA 序列的 sgRNA 22 的计算工具。机制研究表明,工程 23 sgRNA 在 RNA 检测过程中被切割,并且我们确定了受益于 24 化学修饰的关键位置,以提高工程 24 sgRNA 在体内的稳定性。我们的传感器为使用 26 CRISPR 激活来响应内源性 RNA 生物标志物开发新的研究和治疗应用开辟了新的机会。 27
摘要。肿瘤多药耐药性 (MDR) 仍然是成功治疗癌症的最具挑战性的障碍之一。先前的一些研究表明,高迁移率族蛋白 1 (HMGB1) 可能是克服癌症耐药性的有希望的治疗靶点。新兴证据表明,HMGB1 是一把“双刃剑”,在多种癌症的发展和进展中既起促肿瘤作用,又起抗肿瘤作用。HMGB1 还被发现是几种细胞死亡和信号通路的关键调节剂,并通过介导细胞自噬和凋亡、铁死亡、焦亡和多种信号通路参与 MDR。此外,HMGB1 受多种非编码 RNA (ncRNA) 的调控,例如参与 MDR 的 microRNA、长 ncRNA 和环状 RNA。目前研究主要通过靶向沉默HMGB1、药物及ncRNA靶向干扰HMGB1表达等方式克服HMGB1介导的MDR,因此HMGB1与肿瘤MDR密切相关,是一个很有前景的治疗靶点。
摘要:钛合金具有重量轻、强度高、耐热腐蚀等优点,但其优异的力学性能与其组织结构密切相关,在焊接、表面强化、修复等加工过程中需要采用创新的加工方式来保证晶体组织的细化,以满足强度提高、力学性能提高和整体强度提高的要求。通过对Ti-6Al-4V合金表面进行激光直接熔化,比较了连续激光与调制激光模式下熔池的差异。在相同功率下,激光熔池热影响区可缩小为连续激光的1/3。连续激光在高能量密度的作用下可以获得深熔池。不同的熔体穿透深度会导致拉伸性能变化很大。在高频(20 kHz)调制激光作用下可以获得高密度、细晶粒的熔池。包含重熔区的不同熔深深度之间的拉伸试样的力学性能与基体接近,研究结论可为激光重熔加工技术的开发提供技术支持。
心力衰竭 (HF) 与心脏代谢改变有关。1 心脏代谢的变化部分是由于适应不良的机制,部分是由于糖尿病和缺血性心脏病等合并症。因此,HF 应被视为伴有代谢衰竭的全身性和多器官综合征,而衰竭的心脏可看作是没油的发动机。2 心力衰竭时发生的代谢紊乱不仅限于心肌细胞,还扩展到骨骼肌和血管系统,从而引起导致运动能力下降(疲劳、肌肉无力、运动受限)和病情进展的变化(图 1)。1 此外,由于当发生这些代谢变化时心脏和骨骼肌的代谢效率较低,患者在任何特定运动水平上都会消耗更多能量。
尽管对 CLL 治疗有效(1, 2),但大多数缓解是不完全的。此外,大多数患者(包括那些经历完全临床缓解的患者)都表现出耐药性、持续存在的癌细胞,可通过先进的分子技术检测到(3)。从头耐药癌细胞(即在开始治疗前发现)是复发的潜在来源(4)。持续显示无法检测到的持续性癌细胞(即微小残留病阴性)的患者经常会获得良好的长期治疗结果(1, 5, 6)。证据表明,体内微环境相互作用激活了 CLL 细胞对 VEN 的抗凋亡机制。这种抗性被认为发生在淋巴结 (LN) 微环境(“保护性微环境”)中,CLL 细胞在此遇到促存活信号,最近的数据与这一观察结果一致(1, 2, 4)。已知使用伊布替尼 (IBR) 治疗可从部分患者的保护性淋巴结中清除 CLL 细胞 (7–9)。我们和其他研究人员已在 CLL 或 MCL 患者中测试了 IBR 与 VEN 的联合治疗,以利用 IBR 诱导的淋巴细胞增多症在体内产生的治疗脆弱性 (10–14),以及这些药物在体外的协同作用 (15–17)。尽管临床数据显示,这种联合治疗在大多数 CLL 或
摘要 — 闭环睡眠调节是一种治疗睡眠障碍和提高睡眠益处的新兴研究范式。然而,两大障碍阻碍了这一研究范式的广泛应用。首先,受试者通常需要通过有线连接到机架式仪器上进行数据采集,这会对睡眠质量产生负面影响。其次,传统的实时睡眠阶段分类算法性能有限。在这项工作中,我们通过开发一种支持设备闭环操作的睡眠调节系统来克服这两个限制。睡眠阶段分类是使用轻量级深度学习 (DL) 模型执行的,该模型由低功耗现场可编程门阵列 (FPGA) 设备加速。DL 模型使用单通道脑电图 (EEG) 作为输入。两个卷积神经网络 (CNN) 用于捕获一般和详细特征,双向长短期记忆 (LSTM) 网络用于捕获时变序列特征。使用 8 位量化来降低计算成本,同时不影响性能。DL 模型已使用包含 81 名受试者的公共睡眠数据库进行了验证,实现了最先进的 85.8% 的分类准确率和 79% 的 F1 分数。开发的模型还显示出可以推广到不同通道和输入数据长度的潜力。闭环同相听觉刺激已在测试台上得到演示。
摘要 针对抑制性检查点分子的免疫调节疗法彻底改变了实体肿瘤恶性肿瘤的治疗。人们对全身使用免疫检查点抑制剂是否会影响原发性脑肿瘤的担忧得到了解答,因为在患有高突变神经胶质瘤的儿科患者中观察到了明确的反应。尽管胶质母细胞瘤 (GBM) 患者的初步临床结果令人失望,但最近发表的结果表明,使用新辅助程序性细胞死亡蛋白 1 阻断剂治疗的复发性 GBM 患者可能具有生存获益。虽然这些发现需要在后续研究中进行验证,但它们支持在包括 GBM 在内的恶性原发性脑肿瘤中实现临床有意义的免疫反应的可能性,而 GBM 是一种急需其他治疗选择的疾病。使用免疫检查点调节剂治疗胶质瘤面临多项挑战,包括胶质母细胞瘤本身的免疫抑制性质以及高抑制性检查点表达、免疫选择性血脑屏障削弱外周淋巴细胞进入肿瘤微环境的能力以及抑制淋巴细胞活化的皮质类固醇使用率高。然而,通过同时靶向多种共刺激和抑制途径,可能实现有效的抗肿瘤免疫反应。为此,现在有几种新型药物针对最近发现的“第二代”检查点分子。鉴于正在考虑用于联合治疗方案的药物种类繁多,需要更多地了解作用机制和耐药性,并结合更强大的临床前和早期临床试验,才能充分测试这些药物。本综述总结了我们目前对胶质瘤 T 淋巴细胞调节检查点分子的理解,希望重新关注最有希望的治疗策略。
可逆的线粒体损伤,而线粒体裂变会在不可逆地损坏的线粒体积累时发生。5个拉长线粒体是融合活性的结果,而裂缝和小球线粒体是通过裂变产生的。mItofusin 1和2(MFN1-2)和视萎萎缩1蛋白(OPA1)代表线粒体融合的主要编排,从而允许外部(OMM)和内部线形膜(IMM)之间融合。5,7与动力蛋白相关的蛋白1(DRP1),线粒体裂变1蛋白(FIS1),线粒体干蛋白1(MDV1)和线粒体裂变因子(MFF)而不是线粒体裂变。可以通过线粒体去除损坏和老化的线粒体,包括源自线粒体裂变的线粒体,并由生物发生取代新鲜形成的线粒体。7
必须改进可持续水产养殖方法,以应对环境压力和全球日益增长的粮食需求带来的问题。本研究探讨了尼罗罗非鱼(Oreochromis niloticus)养殖的前沿方法,重点关注免疫调节技术、微生物组改造以及减少环境压力以提高抗逆性和产量的关键任务。益生菌、益生元和合生元在增强营养吸收、增强抗病能力和优化肠道健康方面发挥着重要作用,因此微生物组改造成为一项至关重要的策略。使用富含生物活性化学物质的功能性饲料和研发定制疫苗是免疫调节方法取得进展的两个例子,这些方法已被证明有望增强罗非鱼的免疫系统,抵御病原体威胁。通过强化水产养殖系统、控制水质和培育抗逆性鱼种,同时减少缺氧、水温变化和污染物暴露等环境压力,从而提供保障可持续生产的整体策略。鉴于这些环境压力因素对该行业构成重大威胁,应对这些压力因素的重要性不言而喻。基因组学、转录组学和精准水产养殖工具等新兴技术能够监测和调整养殖作业,以适应尼罗罗非鱼的独特需求,进一步促进了这些策略的整合。本综述强调了以科学为导向的综合方法在将尼罗罗非鱼养殖转变为具有韧性、可持续且富有成效的产业方面的潜力,并强调了应对环境压力因素在这一转型中的重要性。图文摘要
miRNA感应指南RNAS ANTONIO GARCIA-GUERRA 1,2,3,4 *,CHAITRA SATHYAPRAKASH 5,OLIVIER G.DE JONG 6,WOOI F. LIM 2,4 Turberfield 1,3,Matthew J.A.木材2,4,Carlo Rinaldi 2,4 *。1。牛津大学牛津大学物理系,英国。2。牛津大学儿科学系,牛津大学,英国。 3。 卡夫利纳米科学研究所,牛津大学,多萝西·克劳特·霍奇金大楼,牛津,英国。 4。 发展和再生医学研究所(IDRM),IMS-Tetsuya Nakamura大楼,旧路校园,牛津,英国。 5。 国家神经科学研究所分子治疗系,国家牛津大学儿科学系,牛津大学,英国。3。卡夫利纳米科学研究所,牛津大学,多萝西·克劳特·霍奇金大楼,牛津,英国。4。发展和再生医学研究所(IDRM),IMS-Tetsuya Nakamura大楼,旧路校园,牛津,英国。5。国家神经科学研究所分子治疗系,国家