我们将量子积分应用于基本粒子物理过程。特别是,我们研究散射过程,例如 e + e − → q ¯ q 和 e + e − → q ¯ q ′ W。可以首先使用量子生成对抗网络或精确方法将相应的概率分布适当地加载到量子计算机上。然后使用量子振幅估计方法对分布进行积分,该方法相对于传统技术显示出二次加速。在无噪声量子计算机的模拟中,我们获得了最多六个量子位的一维和二维积分的准确率。这项工作为利用量子算法进行高能过程的积分铺平了道路。
增材制造 (AM) 或工业三维 (3D) 打印推动了设计和生产可能性的全新领域;它突破了复杂产品生产应用和下一代材料开发领域的界限。AM 技术应用了多种原料,包括具有不同尺寸、形状和表面化学性质的塑料、金属和陶瓷颗粒粉末。此外,粉末经常被重复使用,这可能会改变颗粒的物理化学性质,从而改变其毒性潜力。AM 生产技术通常依靠激光或电子束来选择性地熔化或烧结颗粒粉末。在整个生产和加工阶段,原料粉末上的大量能量输入会产生多种副产品,包括不同数量的原始微粒、纳米颗粒、飞溅物和挥发性化学物质,这些都会排放到工作环境中。微米和纳米级尺寸可能使颗粒与生物屏障相互作用并穿过生物屏障,进而导致意想不到的不良后果,包括炎症、氧化应激、信号通路激活、遗传毒性和致癌性。AM 相关风险的另一个重要方面是由于聚合物分解和聚合物颗粒中化学物质的高温转化而导致的单体和低聚物的排放/泄漏,无论是在生产、使用过程中还是在体内(包括靶细胞中)。这些化学物质是直接毒性、遗传毒性和内分泌干扰的潜在诱因。尽管如此,我们对 AM 颗粒粉末及其副产物是否会对人体产生不利影响的了解仍然很大程度上不足,这促使对整个 AM 生命周期(从原始和再利用到空气中的颗粒)进行全面的安全评估。因此,本综述将详细介绍:1)AM 原料粉末的简要概述、重复使用对颗粒物理化学性质的影响、AM 行业的主要暴露途径和防护措施,2)颗粒生物学特性和关键毒理学终点在颗粒安全评估中的作用,以及 3)用于 AM 安全评估的下一代纳米安全毒理学方法。总之,所提出的测试方法将使人们更深入地了解现有和
•Lita,Adriana E.等。“用于量子应用的超导型单光子和光子数解析检测器的开发。”Lightwave Technology Journal 40.23(2022):7578-7597。•Morozov,Dmitry V.,Alessandro Casaburi和Robert H. Hadfield。“超导光子检测器”。当代物理学62.2(2021):69-91。
通过参数Nikiforov-Uvarov方法在Klein-Gordon方程下获得了Kratzer电位加上Hellmann电位的解决方案。完全计算了相对论能及其相应的归一化波函数。在相对论的klein-gordon方程(无自旋粒子)下,研究了Kratzer-Hellmann潜在模型的理论量。分别对每个熵的a和b的影响(确定电势强度的电位的参数)进行了充分检查。在三个熵下,系统在两个配方表达式之间的相交点确定了针对A电势的参数之一。最后,流行的香农熵不确定性关系称为Bialynick-birula,Mycielski不平等是通过产生数值结果来推断的。
粒子群优化 (PSO) 是一种迭代搜索方法,它使用随机步长将一组候选解决方案围绕搜索空间移动到已知的最佳全局和局部解决方案。在实际应用中,PSO 通常可以加速优化,因为梯度不可用且函数评估成本高昂。然而,传统的 PSO 算法忽略了从单个粒子的观察中可以获得的目标函数的潜在知识。因此,我们借鉴了贝叶斯优化的概念,并引入了目标函数的随机代理模型。也就是说,我们根据目标函数的过去评估拟合高斯过程,预测其形状,然后根据它调整粒子运动。我们的计算实验表明,PSO 的基线实现(即 SPSO2011)表现优异。此外,与最先进的代理辅助进化算法相比,我们在几个流行的基准函数上实现了显着的性能改进。总体而言,我们发现我们的算法实现了探索性和利用行为的理想特性。
确定当送菜升降机 (a) 以 2.5 m/s 的恒定速度向上移动且 (b) 瞬时速度为 2.5 m/s 且加速度为 1 m/s 2 且方向均为向上时,电动机 M 提供的功率。
摘要:准确确定粒子径迹重建参数将成为高亮度大型强子对撞机 (HL-LHC) 实验面临的主要挑战。HL-LHC 同时发生的碰撞数量预计会增加,探测器占用率也会随之提高,这将使径迹重建算法对时间和计算资源的要求极高。命中次数的增加将增加径迹重建算法的复杂性。此外,由于探测器的分辨率有限以及命中的物理“接近度”,将命中分配给粒子径迹的模糊性也会增加。因此,带电粒子径迹的重建将成为正确解释 HL-LHC 数据的主要挑战。目前使用的大多数方法都基于卡尔曼滤波器,这些滤波器被证明是稳健的,并提供良好的物理性能。但是,它们的扩展性预计会比二次方差。设计一种能够在命中级别减少组合背景的算法,将为卡尔曼滤波器提供更“干净”的初始种子,从而大大减少总处理时间。量子计算机的显着特征之一是能够同时评估大量状态,使其成为在大型参数空间中进行搜索的理想工具。事实上,不同的研发计划正在探索量子跟踪算法如何利用这些功能。在本文中,我们介绍了我们在实现基于量子的轨迹查找算法方面的工作,该算法旨在减少初始播种阶段的组合背景。我们使用为 kaggle TrackML 挑战设计的公开数据集。
许多类型的工艺设备用于制造塑料,包括注射模具,压缩模具,挤出机和旋转模具。所有这些过程的共同特征是将颗粒或粉末用作起始材料。饲料材料的特征必须符合某些标准,例如熔点。此外,化学成分,弯曲强度,抗压强度,抗冲击力,密度,耐药性和拉伸强度赋予了由此产生的工件。颗粒的粒径对聚合物的加工性有显着贡献。加热时料斗和熔化速率的流动性,对过程速度有直接影响。颗粒(颗粒)通常在200至2,000微米的范围内用于运输和应用。
摘要 - 粒子疗法利用高能量质子和碳离子来治疗患者,利用其独特的Bragg峰和优越的相对生物学有效性。这种治疗方式在改善疾病治疗率和最大程度地减少治疗副作用方面表现出了巨大的希望。然而,它在中国的采用受到与这种先进的放射治疗技术相关的高成本的限制,强调了该国对粒子治疗设备的大量需求。本报告对临床粒子治疗机构普遍存在的回旋子和同步加速器加速器进行了比较分析。我们检查了它们的光束参数,并提供了与每种加速器类型相关的技术和功能的详细见解。特别是,我们阐明了光束注入,加速和提取的过程,突出了循环的每个阶段的操作复杂性。此外,我们在三维剂量递送中为两个加速器提供了光束强度和能量调制。总而言之,同步加速器提供可调节的能级和产生高能多功能的能力,同时保持远光灯传输速率。相反,回旋子提供具有快速强度调制的连续光束,并且在梁传输线上具有能量变化的能量降解器,从而导致降解器附近的激活。因此,在为临床机构选择最合适的加速器时,必须仔细考虑诸如成本,维护要求,治疗效率和临床需求之类的因素。