抽象背景人类和小鼠天然杀手(NK)细胞已显示出短期暴露于IL-12/15/18鸡尾酒或与某些肿瘤细胞系过夜的共培养后,会发展出记忆样功能。所产生的细胞保留了长达7天以及冷冻保存后的裂解能力,并且已证明记忆样的NK细胞(MLNK)可引起血液恶性肿瘤患者的完全缓解。尚未描述MLNK的单一表型,并且尚未完全表征由造成这些增强功能的短期细胞因子或肿瘤提示引起的生理变化。在这里,我们通过细胞因子和肿瘤启动产生了MLNK,以找到可以更好地定义NK细胞“记忆”的性质,并首次在体内定义了NK细胞“记忆”的性质。方法,我们从健康的供体中启动了具有细胞因子的健康供体(启动细胞因子诱导的记忆样(ICIML)-NK)和肿瘤启动(TPNK)的MLNK,并通过高维流式细胞仪,蛋白质量和代谢粒子分析进行了一夜。作为增强的细胞溶解功能的潜在机制,我们分析了MLNK与NK耐药肿瘤(Z-MOVI)结合的亲和力。我们从健康供体和癌症患者中产生了TPNK,以确定与单个肿瘤类型相互作用产生的MLNK是否可以增强裂解活性。最后,我们使用了复制 - 无能的肿瘤细胞系(Inkmune)来治疗髓样白血病患者,以增强体内NK细胞功能。结论NK细胞“记忆”是与对MHC介导的抑制的抗性相关的生理状态,结果来自健康供体的肿瘤引发的MLNK,癌症患者在体外对多个肿瘤细胞系的细胞毒性增加,类似于ICIML-NK细胞。多维细胞仪鉴定出具有记忆样特征的细胞子集的不同记忆样轮廓; CD57,CD69,CD25和ICAM1的上调。蛋白质组学分析鉴定出41种限于MLNK细胞的蛋白质,我们确定了候选分子的基础NK记忆,这可以解释MLNK如何克服抗性肿瘤的抑制作用。最后,在用Inkmune治疗的五名患有骨髓增生综合征或难治性急性髓样白血病患者中,三名对NK裂解功能和全身细胞因子的可测量增加了治疗。
Camille Engel 1, Stéphanie Valence ², Geoffroy DelPlancq 1, Reza Maroofian 3, Andrea Accogli 4, Emanuele Agolini 5, Fowzan Sami Alkuraya 6, Valentina Baglioni 7, Irene Bagnasco 8, Mathilde Becmeur- Lefebvre 9, Enrico Silvio Bertini 10, Ingo Borggräfe11,Elise Brischoux-Boucher 1,Ange-Line Bruel 12,Alfredo Brusco 13,Dalal K. Bubshait 14,Christelle Cabrol 1,Christelle Cabrol 1,Maria Roberta Cilio 15 Carmela di Giacomo 20,Martine Doco-Fenzy 21,Harmut Engels 22,MarionGérard23,Joseph Gleeson 24,Joanna Goffeney 25,Anne Guimier 26,Anne Guimier 26,Frederike L. Harms 27,Henry Hounden 3,Michele Iacomino 28,Michele Iacomino 28,Rauan Kaiyrzanov 29 Karimiani 31,Dror Kraus 32,Paul Kuentz 12; 33,Kerstin Kutsche 34,Damien Lederer 35,Lauren Massingham 36,Cyril Mignot 37,DéborahMorris-Rosndahl 38,Lakshmi Nagarajan 39,Sylvie Odent 40,Sylvie Odent 40,CotthildeVomières26,Jennifer Neil Neil Neil Neil Neil。 Partlow 41,Laurent Pasquier 40,Lynette Penney 42,Christophe Philippe 43,Gianluca Piccolo 44,Cathryn Poulton 45,Audrey Putoux 46,MarlèneRio26,Christelle Rougeot 47,Vincenzo Salpietro 44; 48,Ingrid Scheffer 49,Amy Schneider 49,Siddharth Srivasta 50,Rachel Straussberg 51,Pasquale Striano 44; 48,Enza Maria Valente 52,Perrine Venot 53,Laurent Villard 54,Antonio Vitobello 12,Johanna Wagner 55,Matias Wagner 56,Maha S. Zaki 57,Federizo Zara 44; 48,莱昂内尔·范·马尔德格姆(Lionel Van Maldergem)1,莉迪·伯格伦(Lydie Burglen)58,朱丽叶·皮亚特(Juliette Piard)1,12Camille Engel 1, Stéphanie Valence ², Geoffroy DelPlancq 1, Reza Maroofian 3, Andrea Accogli 4, Emanuele Agolini 5, Fowzan Sami Alkuraya 6, Valentina Baglioni 7, Irene Bagnasco 8, Mathilde Becmeur- Lefebvre 9, Enrico Silvio Bertini 10, Ingo Borggräfe11,Elise Brischoux-Boucher 1,Ange-Line Bruel 12,Alfredo Brusco 13,Dalal K. Bubshait 14,Christelle Cabrol 1,Christelle Cabrol 1,Maria Roberta Cilio 15 Carmela di Giacomo 20,Martine Doco-Fenzy 21,Harmut Engels 22,MarionGérard23,Joseph Gleeson 24,Joanna Goffeney 25,Anne Guimier 26,Anne Guimier 26,Frederike L. Harms 27,Henry Hounden 3,Michele Iacomino 28,Michele Iacomino 28,Rauan Kaiyrzanov 29 Karimiani 31,Dror Kraus 32,Paul Kuentz 12; 33,Kerstin Kutsche 34,Damien Lederer 35,Lauren Massingham 36,Cyril Mignot 37,DéborahMorris-Rosndahl 38,Lakshmi Nagarajan 39,Sylvie Odent 40,Sylvie Odent 40,CotthildeVomières26,Jennifer Neil Neil Neil Neil Neil。 Partlow 41,Laurent Pasquier 40,Lynette Penney 42,Christophe Philippe 43,Gianluca Piccolo 44,Cathryn Poulton 45,Audrey Putoux 46,MarlèneRio26,Christelle Rougeot 47,Vincenzo Salpietro 44; 48,Ingrid Scheffer 49,Amy Schneider 49,Siddharth Srivasta 50,Rachel Straussberg 51,Pasquale Striano 44; 48,Enza Maria Valente 52,Perrine Venot 53,Laurent Villard 54,Antonio Vitobello 12,Johanna Wagner 55,Matias Wagner 56,Maha S. Zaki 57,Federizo Zara 44; 48,莱昂内尔·范·马尔德格姆(Lionel Van Maldergem)1,莉迪·伯格伦(Lydie Burglen)58,朱丽叶·皮亚特(Juliette Piard)1,12
摘要:G-四链体 (G4) 序列可以折叠成更高级的 G4 结构,在人类基因组中含量丰富,并且在许多与人类癌症起始、进展和转移有关的基因的启动子区域中过度表达。它们是 G4 结合小分子的可能靶标,在启动子 G4 的情况下,会导致这些基因的转录下调。然而,目前只有极少数 G4 及其配体复合物的结构信息可用。这一限制,加上目前与大多数复杂人类癌症有关的含 G4 基因的信息有限,导致了以表型为主导的 G4 配体药物发现方法的发展。这种方法通过几代三取代和四取代萘二酰亚胺 (ND) 配体的发现得到说明,这些配体被发现在胰腺癌细胞系中表现出强大的生长抑制作用,并且在这种难以治疗的疾病的体内模型中活跃。经过多次探索,最终研发出了一种高效四取代 ND 衍生物 QN-302,目前正在进行 1 期临床试验评估。这里列出了 QN-302 下调表达的主要基因:所有基因均具有 G4 倾向,并且已发现在人类胰腺癌中上调。其中一些基因在其他人类癌症中也上调,支持了 QN-302 是一种泛 G4 药物的假设,该药物在胰腺癌之外具有潜在用途。
亲本物种的变异(Rieseberg 等人,2003b;Bell 和 Travis,2005;Stelkens 等人,2009)。超亲表型在植物和动物中都很常见,迄今为止已在几种与适应度相关的性状中得到证实,包括形态学(鱼类的头骨形态学,Stelkens 等人,2009;蝴蝶的翅膀形态学,Mérot 等人,2020)、生理学(桡足类的温度耐受性,Pereira 等人,2014)、生活史(蜗牛的后代数量和大小,Facon 等人,2008)和行为性状(果蝇的交配行为,Ranganath 和 Aruna,2003;鱼类的觅食行为,Selz 和 Seehausen,2019;Feller 等人,2020)。已经提出了不同的机制来解释亲本基因组重组如何产生新性状(Rieseberg 等人,2003b;Bell 和 Travis,2005;Stelkens 等人,2009;Thompson 等人,2021)。极端杂交表型可能出现在第一代(F1)杂交中,这种现象通常
气候变化将在未来几十年内从根本上重塑地球上的生命。因此,了解物种应对温度升高的程度至关重要。表型可塑性是生物体改变其基因组对环境所编码的形态和功能性状的能力。我在这里表明,可塑性不仅弥漫在天然的系统中,还可以模仿生物生物的发育过程,例如自我复制和不断发展的计算机程序 - 数字生物。具体来说,环境可以修改从数字有机体的基因组执行的指令顺序(即其转录组),这会导致其表型的变化(即数字有机体执行布尔逻辑操作的能力)。这种基于遗传的可塑性途径的适应性成本可以使生物体的生存能力和发电时间:转录组(较高的健身成本)越长,环境改变遗传执行流量控制的机会就越大,并且基因组对编码新表型的可能性越高。通过研究数字有机体的基因组和环境的影响在多大程度上,我在自然和人工化的系统之间建立了平行性,介绍了自然选择如何从整体环境控制到总基因组控制到总基因组控制的任何地方,从而使人们不仅可以更轻松地设计生物学的生物学,而且还要降低了对现实的人工体系的影响。
靶向表型可塑性可预防转移和化疗耐药性疾病的发展 Beatriz P San Juan 1,2,3 , Soroor Hediyeh-Zadeh 4 , Laura Rangel 1,2,3 , Heloisa H Milioli 1,2,3 , Vanina Rodriguez 1,3 , Abigail Bunkum 1 , Felix V Kohane 1,5 , Carley A Purcell 1,2,3 , Dharmesh D Bhuva 4, Anie Kurumlian 1 , Lesley Castillo 1 , Elgene Lim 1,2 , Anthony J Gill 6 , Vinod Ganju 7 , Rachel Dear 2 , Sandra O'Toole 1 , A. Cristina Vargas 8 , Theresa E Hickey 9 , Leonard D Goldstein 1 , John G Lock 5 ,梅丽莎·J·戴维斯 4,10,11和 Christine L Chaffer 1,2,3 1. 加文医学研究所,达令赫斯特,新南威尔士州,澳大利亚 2. 圣文森特临床学院,新南威尔士大学医学院,新南威尔士大学悉尼,新南威尔士州,澳大利亚 3. 金霍恩癌症中心,达令赫斯特,新南威尔士州,澳大利亚 4. 沃尔特和伊丽莎霍尔医学研究所,帕克维尔,维多利亚州,澳大利亚 5. 新南威尔士大学医学院病理学系,新南威尔士大学悉尼,新南威尔士州,澳大利亚 6. 悉尼大学悉尼医学院,悉尼,新南威尔士州,澳大利亚 7. 莫纳什大学,莫纳什,维多利亚州,澳大利亚 8. 道格拉斯汉利莫尔,病理学实验室,麦考瑞大学,悉尼,新南威尔士州,澳大利亚 9. 阿德莱德大学医学院 Dame Roma Mitchel 癌症研究实验室,阿德莱德,南澳大利亚州,阿德莱德 10. 墨尔本大学医学生物学系,帕克维尔,维多利亚州,澳大利亚 11.墨尔本大学,维多利亚州帕克维尔,澳大利亚 通讯作者: 克里斯汀·查弗:c.chaffer@garvan.org.au 梅丽莎·戴维斯:m.davis@wehi.com.au 比阿特丽斯·佩雷斯·圣胡安:b.perez@garvan.org.au 摘要 癌细胞启动表型可塑性程序来推动疾病进展和逃避化疗的损伤,但到目前为止,尚无针对这一过程的经过验证的临床疗法。在这里,我们确定了一种与基底/三阴性乳腺癌低生存率相关的表型可塑性特征,其中雄激素信号传导占主导地位。我们确定抗雄激素疗法可阻断癌症干细胞功能并防止化疗诱导的新癌症干细胞的出现。特别是,抗雄激素药物 seviteronel 与化疗协同作用,增强化疗对原发性和转移性肿瘤生长的抑制并防止化疗耐药性疾病的出现。我们证实细胞质 AR 表达是一种临床表型可塑性生物标志物,可预测生存率低和对化疗反应差,以及对 seviteronel 联合化疗反应良好。这种新的靶向联合疗法证实调节表型可塑性是一种有效的预防和治疗化疗耐药性癌症的策略,具有转化临床潜力。重要性声明目前尚无针对化疗耐药性癌症患者的治愈疗法。我们证明调节表型可塑性可防止三阴性乳腺癌出现化疗耐药性疾病。这是已知的第一个利用表型可塑性的经过验证的临床疗法。此外,我们还确定了一种高效的抗雄激素药物和一种生物标志物,用于选择和治疗最适合这种新疗法的患者。临床试验正在进行中(NCT04947189)。摘要语句阻断表型可塑性是一种有效的靶向治疗策略,用于治疗癌症关键词表型可塑性、化疗耐药性、转移、细胞状态转变、细胞状态调节疗法、非遗传异质性、非甾体抗雄激素、Seviteronel、癌症干细胞、CSC、三阴性乳腺癌、TNBC。
绒毛膜 - 全藻细胞增多症(VPS13A疾病)是一种具有广泛表型谱的罕见的多系统神经退行性疾病。它的特征是神经精神症状和棘细胞的存在。然而,葡萄球菌与疾病严重程度之间的关系尚不清楚。诊断SI是通过基因检测确定的。我们提出了两个患有VPS13A疾病的姐妹,每种姐妹都表现出不同的临床表现。年轻人表现出严重的症状,包括耐药性癫痫,神经术的卫生问题,舞蹈和自我杀伤,以及血液涂片中存在痤疮细胞(10%)。基因检测鉴定出VPS13A基因中的纯合同义突变(染色体9:79971783 g> c,外显子55,c.7806g> c,pro2602 =)。相反,姐姐的经验只有控制良好的癫痫发作和肌酸激酶水平升高,外周血涂片中没有棘突细胞,这已经进行了三次。她还拥有VPS13A基因中相同的纯合同义词莫斯突变。
摘要。可塑性,癌细胞在没有基因组改变的分化状态之间过渡的能力已被认为是肿瘤内异质性的主要来源。它在癌症转移和耐药性中具有至关重要的作用。因此,靶向可塑性具有巨大的希望。然而,癌细胞中可塑性的分子机制仍然鲜为人知。几项研究发现,mRNA充当连接DNA和蛋白质遗传信息的桥梁,在将基因型转化为表型中具有重要作用。本综述概述了通过变化和编辑mRNA进行的调节癌细胞可塑性的调节。讨论了mRNA在癌细胞可塑性中的转录调节的作用,包括结合转录因子,DNA甲基化,组蛋白修饰和增强子。此外,辩论了mRNA编辑在癌细胞可塑性中的作用,包括mRNA剪接和mRNA修饰。此外,阐述了非编码(NC)RNA在癌症可塑性中的作用,包括microRNA,长基因间NCRNA和圆形RNA。最后,讨论了靶向癌细胞可塑性克服转移和癌症治疗性的不同策略。
Usher综合征是一种遗传性的,临床上异质性的疾病,其特征是感觉性听力丧失,进行性视网膜变性和前庭功能障碍。有三种表型可识别的类型的usher综合征。患有usher综合征1型的个体没有前庭功能和深刻的感觉性听力损失。患有USHER综合征2型的个体具有正常的前庭功能和轻度至重度听力损失,视力障碍后来出现了。患有III型usher综合症的人听力和视力丧失从后期开始。在本案报告中,我们报告了一名7岁男孩因进行性听力损失和双边视力障碍而咨询,而眼底检查显示,两只眼睛都有轻度的双侧视网膜血管衰减和骨spicule沉积物。A molecular genetic test done by next-generation sequencing identified a homozygous pathogenic variant in the CDH23 gene (NM_022124.5:c.2255del variant coordinate with amino acid change of p.(Gly752Valfs*13)), confirming the diagnosis of autosomal recessive Usher syndrome type ID (USH1D).患者的视觉和光学辅助设备有了显着改善。遗传咨询(包括生殖咨询)已向父母提供。临床评估,视觉听力测试和基因工作证实了Usher综合征,这是罕见但危险的听力损失原因和视觉障碍的原因,需要通过多学科团队的方法对其进行彻底评估。
摘要:非O1和非O139弧菌霍乱(NOVC)会引起人类胃肠道感染。被污染的食物,尤其是海鲜,是人类感染的重要来源。在这项研究中,从零售海鲜中分离出的63个NOVC菌株的毒力潜力在基因型和表型水平上被表征。尽管没有菌株编码霍乱毒素(CTX)和毒素调节的pilus(TCP),但包括Hlya Hymolysin,cholix Toxin CHXA,热稳定的肠毒素STN,以及针对3型和6型分泌系统编码的基因。所有菌株均表现出针对人和绵羊红细胞的溶血活性:90%(n = 57)形成强生生物膜,52%(n = 33)在37℃时高度运动,只有8%(n = 5)和14%(n = 9)可以抗拒60%和≥40%的人类血清。生物膜形成和毒素调节基因。CGMLST分析表明,来自临床NOVC菌株的海鲜簇的NOVC菌株。抗菌易感性测试(AST)导致对五种菌株的鉴定,这些菌株针对β-内酰胺类(包括青霉素,碳碳素,碳酸苯甲酸酯和头孢菌素),多酰氧蛋白,多酰氧蛋白和硫酰胺和硫酰胺的物质产生了非wildtype表型(中和耐药性)。表型抗性模式可以部分归因于在计算机分析中通过鉴定的获得的耐药性决定因素。我们的结果表明,从零售海鲜产品中分离出的分析的NOVC的毒力潜力差异,可以考虑进一步的致病性评估以及对未来海鲜监测中NOVC分离株的风险评估。
