1 中国四川省医学科学院、电子科技大学医学院四川省人民医院内分泌科,成都,2 美国德克萨斯州休斯顿贝勒医学院神经科学系,3 广西中医药大学药学院,南宁,4 成都市龙泉驿区妇幼保健院药学部,成都,5 中国四川省医学科学院、电子科技大学医学院四川省人民医院重症医学科,成都,6 四川省医学科学院、四川省人民医院器官移植中心、临床免疫学转化医学四川省重点实验室,四川,成都
MSU 是一家积极行动、提供平等机会的雇主,致力于通过多元化的员工队伍和包容性文化实现卓越,鼓励所有人充分发挥自己的潜力。密歇根州立大学推广计划和材料向所有人开放,不分种族、肤色、国籍、性别、性别认同、宗教、年龄、身高、体重、残疾、政治信仰、性取向、婚姻状况、家庭状况或退伍军人身份。为进一步推进 MSU 推广工作,根据 1914 年 5 月 8 日和 6 月 30 日的法案,与美国农业部合作发布。昆汀·泰勒,主任,MSU 推广,东兰辛,密歇根州 48824。此信息仅用于教育目的。对商业产品或商品名称的引用并不意味着 MSU 推广对其的认可或对未提及的商品或商品名称的偏见。
基因表达调节中的遗传变异对表型32变异有很大贡献。了解DNA序列和表观依恋修饰的变异如何导致33个基因表达变异仍然是一项艰巨的任务。在杂种动物的34个环境是均匀的杂种动物中,父亲和母体35等位基因的表达之间的差异必须是由于顺式序列或表观遗传差异所致。因此,混合映射是一种有效识别和表征在CIS中的37个机制下调节基因的36强方法。在这项研究中,使用表型发散的杜罗克38和Lulai Pig品种的相互交叉,我们在四个发育阶段对调节性39变化进行了全面的多摩尼克表征。迄今为止,我们在猪中生产了一个40个最大的多OMIC数据集,其中包括16个整个基因组测序基因组,41 48个48个全基因组Bisulfite测序,168个ATAC-SEQ和168个RNA-SEQ样品。我们开发了42种基于读数的新方法,以可靠地评估等位基因特异性甲基化,染色质43可访问性和RNA表达。我们表明,在所有DNA甲基化,染色质可及性和基因45表达中,组织特异性比44个发育阶段特异性强得多。我们鉴定了573个基因,显示了等位基因特异性表达,包括受父母的影响46的基因以及等位基因基因型效应。52通过整合甲基化,染色质47可访问性和基因表达数据,可以通过等位基因特异性甲基化和/或染色质访问性来解释这些等位基因特异性表达中的许多。这项研究提供了多个组织的调节变化和猪发育50个阶段的最大49个综合特征之一,并为这一重要的食物动物51种提供了新的遗传改善机会。
摘要:过去几十年来,基因工程的进步使得开发出生产转基因动物的方法成为可能。转基因技术的发展为研究开辟了新的方向,也为其实际应用创造了可能性。生产转基因动物物种不仅旨在加速传统的育种计划,改善动物健康和食用动物产品质量,还可用于生物医学。动物研究旨在开发用于基因功能和调控研究以及某些人类疾病的遗传决定因素的模型。本综述中描述的另一个研究方向侧重于使用转基因动物作为高质量生物制药(如重组蛋白)的来源。讨论的另一个方面是使用转基因动物作为细胞、组织和器官的来源,以移植到人类受体中,即异种移植。许多研究表明,猪(Sus scrofa domestica)是最适合作为人类疾病研究模型和异种移植的最佳器官供体的物种。与其他牲畜相比,转基因猪的怀孕期短、世代间隔短和产仔数高使得转基因猪的生产耗时更少。本综述介绍了用于生物医学研究的转基因猪以及猪动物模型使用的未来挑战和前景。
摘要:自17世纪以来,已经研究了涉及动物器官移植到人类短缺的人体中的异种移植,以解决人类器官短缺。早期尝试从山羊,狗和非人类灵长类动物等动物那里获得器官被证明没有成功。在1990年代,科学家们同意猪是最合适的供体动物。但是,猪和人之间的免疫排斥反应阻碍了应用。为了克服这些挑战,研究人员开发了遗传改性的猪,这些猪会失活异种反应性抗原基因并表达人类保护基因。这些进步在非人类灵长类动物中从几天到几年扩展了异种移植的生存,导致了第一次人类心脏异种移植试验。使用基因工程猪来进行器官短缺。本综述概述了与人与猪之间异种移植有关的免疫原性和功能蛋白的潜在不相容性。此外,它阐明了多重基因修饰的可能方法,以繁殖更好的人类化猪来进行临床异种移植。
传统上,母猪是 Saddleback 品种。后来,人们开始使用 Saddleback x Landrace,即所谓的“Blue”。在最近户外养猪生产增加的过程中,杜洛克杂交品种取代了 Blue。杜洛克与 Saddleback 具有相同的耐寒性和良好的母性,但其生长和胴体特征以及抗晒伤性明显更好。尽管育种和选择得到改善,但户外养猪生产系统的后代胴体质量(就背膘厚度而言)往往比室内养猪的同类猪更差。报告显示,户外养猪的后代背膘平均多 1 毫米。
终末期器官衰竭或急性创伤性损伤与相当高的发病率和死亡率相关。对于许多此类绝症或毁灭性疾病,唯一的治愈疗法是实体器官移植 ( Garry 等人, 2005 年; Virani 等人, 2021 年 )。由于器官捐赠者数量有限,这种治愈性疗法仅适用于需要这些疗法的一小部分患者。例如,据估计,每年有 20 万至 30 万美国成年人可从原位心脏移植中受益,但只有大约 3000 名成年人接受了心脏移植 ( Virani 等人, 2021 年 )。这种差异推动了人们寻求替代疗法。除了心脏病等终末期器官疾病外,还有威胁四肢并最终导致肌肉体积损失的创伤性损伤 ( Corona 等人, 2015 年; Greising 等人, 2016 年 )。目前,治疗肌肉体积损失的治疗方法有限,因此导致大量发病率、截肢、终身残疾和生命损失(Greising 等人,2017 年)。这些慢性疾病和创伤需要新的治疗方法。基因编辑(Doudna 和 Charpentier,2014 年;Jinek 等人,2012 年;Cong 等人,2013 年)和体细胞核移植 (SCNT) 技术等技术进步
靶向核酸酶等高精度基因组编辑工具的发展加速了人类基础医学、动物科学、动物育种以及疾病诊断等领域的进步(Doudna and Charpentier,2014;Kurtz 等,2021;Rieblinger 等,2021;Xie 等,2021)。尤其是被称为 CRISPR 技术的基因组编辑系统自首次报道以来发展迅速(Jinek 等,2012),成为最热门的技术之一。CRISPR/Cas9 技术可精准识别靶序列并实现高效的 DNA 切割,从而完成全基因组范围的基因敲除/敲入(Cong 等,2013;Koike-Yusa 等,2014)。但由于编辑过程中会发生双链断裂(DSB),该技术往往会引入大量不理想的InDel(插入和缺失)突变(Zhao et al.,2019)。随后,人们开发了碱基编辑器(BE),可以利用胞嘧啶脱氨酶或腺苷脱氨酶实现单核苷酸的精准编辑,而不会诱导DSB(Gaudelli et al.,2017;Rees and Liu,2018)。近来,引物编辑器(PE)进一步扩展了基于CRISPR的编辑工具包,可实现所有12种可能的碱基转换和短DNA片段的插入和缺失。该技术融合逆转录酶和Cas9蛋白,以引物编辑向导RNA(pegRNA)为修复模板,实现精准的基因编辑(Anzalone et al.,2019)。在这篇小型评论中,我们总结并讨论了 CRISPR 技术在猪中的最新应用。
早期的肠道微生物群组成对仔猪的健康至关重要,影响了长期的微生物组发育和免疫力。在这项研究中,将肠道大坝的肠道菌群与三个生长阶段的三个芬兰猪农场中的后代进行了比较。在出生时(初始暴露阶段),断奶(过渡阶段)和屠宰(稳定阶段)分析了三个研究开发组(良好,良好,良好和过早)粪便菌群的差异。大坝乳杆菌科的舞蹈比出生时低于小猪。limosilactobacillus reuteri和氨基杆菌在大坝及其后代中主要表达。在初始暴露阶段,用乳杆菌科确定了17头仔猪(68%),在发育组之间不均匀地划分:85%的良好,37.5%的差,占早产猪的75%。开发组的良好是微生物多样性最高的,而开发小组的多样性最低。断奶后,小猪中乳杆菌科的丰度和多功能性减少,向大坝的微生物组转移。总而言之,尽管开发组和饲养环境,猪的粪便微生物群仍倾向于向类似的α和β多样性发展。
1 Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark, 2 ImaGene-iT AB, Medicon Village, 223 81 Lund, Sweden, 3 US Department of Agriculture/Agricultural Research Service, and Department of Pediatrics, Baylor College of Medicine/Texas Children ' s Hospital, Children ' s Nutrition Research Center, Houston, Texas 77030, 4 Department of Clinical Sciences Lund, Pediatrics, Lund University, 221 84 Lund, Sweden, 5 Department of Neonatology, Rigshospitalet, 2100 Copenhagen, Denmark, 6 Department of Pediatrics, Odense University Hospital, 5000 Odense, Denmark, and 7 Department of Neuroscience, Faculty of Health and Medical Sciences, University of哥本哈根,2200哥本哈根,丹麦