1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
21. 在评估这些数据时,应牢记,如果只关注特别提到“机组疲劳”的叙述,可能会遗漏与疲劳有关的事件。另一种可能性是使用“人为因素”一词,因为疲劳可能是人为因素背后的一个促成因素,但这样做的风险是高估了与疲劳有关的事件的数量。此外,许多运营商根据与机组人员的集体劳动协议开展运营,其中包含超出子部分 Q(或国家法规)的法律要求的进一步缓解措施,这可以解释发现的事件数量相对较少(见下文)。最后,疲劳是机组人员传统上报告不足的一个问题,因为(自我)评估疲劳通常是一项困难的工作。
21.在评估这些数据时,应牢记,如果只关注特别提到“机组疲劳”的叙述,可能会遗漏与疲劳相关的事件。另一种可能性是使用“人为因素”一词,因为疲劳可能是人为因素背后的一个促成因素,但这样做的风险是高估与疲劳相关的事件数量。此外,许多运营商根据与机组人员的集体劳动协议开展运营,其中包含超出子部分 Q(或国家法规)法律要求的进一步缓解措施,这可以解释已识别事件数量相对较少的原因(见下文)。最后,疲劳是机组人员传统上报告不足的一个问题,因为(自我)评估疲劳通常是一项困难的工作。
(3) 在任何起落架和襟翼位置,以 1·2 V S1 的直线、稳定滑行,以及在功率条件达到最大连续功率的 50% 时,副翼和方向舵控制运动和力必须随着滑行角增加到适合飞机类型的最大值而稳定增加(但不一定按恒定比例增加)。在较大的滑行角下,直到使用全舵或副翼控制或获得 JAR-VLA 143 中包含的控制力极限的角度,方向舵踏板力不得反转。滑行必须伴随足够的倾斜度以保持恒定的航向。快速进入最大滑行或从最大滑行恢复不得导致无法控制的飞行特性。
这篇论文是我在 Roland Siegwart 教授的自主系统实验室担任研究助理四年的成果。我先是在洛桑联邦理工学院,然后在苏黎世联邦理工学院,这两所学院是瑞士的两所联邦理工学院。这段时期非常有趣且收获颇丰,我与许多机构进行了合作,在这样的环境中工作是一种荣幸。首先,我要感谢我的导师 Roland Siegwart 教授,感谢他给了我撰写这篇论文的绝佳机会,也感谢他的建议、支持和领导,让我们的实验室感觉像一个大家庭。还要感谢论文委员会成员 André Borschberg、Peter Corke 和 Claude Nicollier 对论文的仔细阅读并提出了建设性的反馈意见。如果没有 Sky-Sailor 的建造者和飞行员 Walter Engel 的大力帮助,这篇论文不可能完成。我要非常感谢他,因为在这个项目四年的时间里,他教会了我成千上万关于模型飞机的知识。与他一起工作并在艾因西德伦测试我们的飞机总是一件非常愉快的事情。我还要感谢 Samir Bouabdallah,我先是和他一起完成了我的毕业论文,然后继续完成博士论文,Daniel Burnier、Janosh Nikolic、Stéphane Michaud、Jean-Christophe Zufferey 以及 EPFL/ETHZ 的 Aero Initiative 的所有人员,感谢他们在飞行机器人和电子设备方面与我们进行了富有成效的讨论。对于他们在控制方面的帮助,我将不胜感激
AAI 事故调查办公室 AAM 航空医学办公室 AAMP 先进飞机机动计划 AC 咨询通告 ACE-100 小型飞机理事会 ACO 飞机认证办公室 ACSEP 飞机认证评估系统 AD 适航指令 AEG 飞机评估组 AFS 飞行标准 AIR 飞机认证服务 ANM-100 运输飞机理事会 APC 飞机-飞行员耦合 ARAC 航空规则制定咨询委员会 ATM 空中交通管理 ATOS 空中运输监督系统 AVS 航空安全副局长 CDR 关键设计评审 CFR 联邦法规 CIR 一致性检查报告 CM 状态监测 CMT 认证管理小组 CNS 通信、导航、监视 CPS 商用飞机认证过程研究 CMR 认证维护要求 CWT 中央机翼油箱 DAR 指定适航代表
实现双冗余电池系统的正确方法是使用 ElectroDynamics 的 EDR-108 Pow’R Back’R 等电子电路。Pow’R Back’R 将电池组完全隔离,始终从电压最高的电池组获取电力。此外,它采用真正的双冗余设计,每个电路元件都为每条电路路径复制,因此一侧完全失效(开路或短路)不会影响无线电操作。这种隔离也延伸到充电电路,因此可以使用任何多输出充电器为两个电池充电。
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki、Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,使用计算机和相对较轻的电线来取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统已用于制导导弹,随后用于军用飞机。商用飞机实施延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成对高完整性数字 FBW 系统的总工程开发成本贡献很大。讨论了与软件和冗余技术相关的问题。空中客车和波音等领先的商用飞机制造商在其民用客机中采用了 FBW 控制。本文介绍了他们的方法、控制理念的差异以及实现航空公司运营所必需的同等安全保障水平的实施情况。关键词 航空电子、软件工程、软件安全、容错 1.简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换为传送到控制面的电脉冲。空中客车和波音在其商用飞机中利用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施 FBW 系统时使用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。
我们确定飞机之间的最小安全间距以及空中交通管制系统的复杂性。考虑到领先飞机在其尾流中留下的涡流,一架飞机的尾部和下一架飞机的机头之间的距离应至少为 5.5 公里或 3.4 英里。相邻飞机之间的最小间距(无论是侧面、上方还是下方)应至少为 730 米或 0.45 英里。这些距离是使用伯努利原理计算的,该原理指出,流体(例如空气)的速度增加时,其内部压力会降低。由于飞机的速度非常高,机翼周围的压力很低。与伯努利因子相关的压力变化施加在面对的表面区域上,导致将飞机推到一起的力;这种力量可能会改变飞机的飞行模式。最后,如果两架飞机相向而行,它们之间必须有足够的空间来执行规避动作。我们发现需要 12 秒;在正常飞行速度下,这相当于 2.9 公里或 1.8 英里。我们将空域扇区的复杂性定义为在给定时间段内发生冲突的概率。为了确定复杂性,我们假设扇区是长方体,飞机以平行或反平行方向飞行。我们计算一架飞机在另一架飞机之后过早进入扇区的概率,或者两架飞机以反平行方向进入同一航道的概率。