收到:2024年9月10日修订:2024年9月13日接受:2024年9月17日的抽象背景和目标:psilocybin是一种血清素能迷幻的,最近与诱导大脑的神经可塑性有关。本综述旨在探讨psilocybin如何影响神经可塑性的当前证据,重点关注其对大脑活动,连通性和潜在治疗意义的影响。方法:对最近的研究进行了系统的综述,包括脑电图(EEG)的研究,theta功率变化,结构和功能性神经可塑性以及神经成像发现。评估psilocybin对神经发生,旋转生成和脑功能改变的影响的研究被审查,以了解其对神经可塑性的影响。结果:研究表明,psilocybin的给药会导致脑电图的显着增加,反映了神经活动和连通性的变化。psilocybin促进了结构和功能可塑性,这可以通过神经发生和旋转生成增加而证明。成像研究表明,psilocybin诱导的非同步和脑活动的改变,这与其治疗作用相关。这些发现表明,psilocybin诱导树突状棘的快速生长,影响神经元的结构和功能。结论:psilocybin具有诱导神经可塑性的重要潜力,对治疗神经系统和心理条件的影响。关键词:psilocybin,神经可塑性,神经发生,神经成像,大脑连通性观察到的大脑连通性和结构的变化强调了对迷幻诱导的神经可塑性机理及其潜在的治疗益处的进一步研究的需求。
我们探索了神经动力学的相交以及在框架中不同时间标准的光中迷幻的效果,从而整合了动力学,复杂性和7个可塑性的概念。,我们称之为该框架神经几何动力学,因为它与General 8相对论对时空与物质相互作用的描述的相似之处。“快速时间”动力学动态景观内的轨迹9个ries的几何形状是由10个差分方程及其连接参数的结构所塑造的,其连接参数本身是由国家依赖性和独立于状态独立的形式机制驱动的“慢11个时间”。最后,可塑性过程的12个调整(替代性)以“ Ultraslow”时间尺度进行。13迷幻药使神经局势呈扁平,从而导致神经动力学的熵和复杂性14,如在神经影像学和建模研究中所观察到的,与功能整合的破坏相关的复杂性增加了15。我们强调了临界性,快速神经动力学的复杂性和突触可塑性之间的关系16。Patho-17逻辑,刚性或“流口化”神经动力学导致超强的封闭曲目,18允许较慢的塑料变化以进一步巩固它们。然而,在迷幻的影响下,复杂动力学的不稳定的出现会导致更加流动性和20个适应性的神经状态,这一过程被21种迷幻药的可塑性增强作用所增强。我们的框架提供了这24种物质的急性影响及其对神经结构和功能的潜在长期影响的整体观点。25这种转变表现为疾病的急性全身性增加,并且可能影响短期动力学和长期23个塑料过程的复杂性可能长期持续增长。
1 乌法国立航空技术大学先进材料物理研究所,450008 乌法,俄罗斯 2 圣彼得堡国立大学创新工程应用先进块体纳米材料力学实验室,198504 彼得霍夫,圣彼得堡,俄罗斯 3 阿尔托大学应用物理系,00076 阿尔托,埃斯波,芬兰 4 NRC 库尔恰托夫研究所理论与实验物理研究所,117218 莫斯科,俄罗斯 5 诺曼底大学,UNIROUEN,鲁昂 INSA,CNRS,材料物理组,76000 鲁昂,法国
“在底部,当生物学上解释习惯时,这一原则基于习惯的事实。习惯的基本特征是,每种经验都制定并经历了行为和经历的人,而这种修改会影响后续经验的质量。因为它是一个有些不同的人。”约翰·杜威(John Dewey)的经验与教育(1938年)Touchstone,纽约洛克菲勒中心。kappa delta pi讲座系列,pp。35。
Cowan 及其同事 (2000) 回顾了神经科学的历史根源以及 20 世纪的发展阶段。在 19 世纪后期和 20 世纪初期,出现了许多里程碑式的发现,每一项发现都对神经解剖学或神经生理学等长期存在的学科做出了重大贡献。然而,Cowan 等人 (2000) 指出,这些发现都没有超越传统的学科界限,而这正是当代神经科学领域的决定性特征。Kandel 和 Squire (2000) 得出结论,现代神经系统细胞科学基于两项基本发现:神经元学说和离子假说。Wilhelm His 将轴突描述为未成熟神经细胞的产物,这是朝着神经元学说的形成迈出的重要一步。四个科学领域——胚胎学、组织学、生理学和病理解剖学——都提出了神经元之间存在不连续性的证据。西班牙神经学家拉蒙·卡哈尔 (Ramon y Cajal) (1959) 证明神经纤维具有与其他神经细胞接触但不会融合的终端结构——它们是毗连的而不是连续的——这为神经元的发育提供了关键支持。拉蒙·卡哈尔证明大脑由被称为神经元的离散细胞组成,这些细胞被认为是基本信号传导单位,从而创立了神经元学说。在拉蒙·卡哈尔的时代,神经发生的研究是在组织学领域进行的。在当代神经科学中,人们一直关注神经元发育所涉及的分子和细胞机制。离子假说由艾伦·霍奇金、安德鲁·赫胥黎和伯纳德·卡茨于 20 世纪 40 年代末提出,该假说用特定离子的运动来解释神经细胞的静息电位和动作电位,从而使神经系统能够根据细胞生物学共有的物理化学原理来理解(Kandel & Squire,2000 年)。20 世纪 50 年代和 60 年代见证了神经解剖学、神经药理学、神经化学和行为科学融入神经科学(Cowan 等人,2000 年)。 1978 年初,《神经科学年度评论》创刊号出版,预示着神经系统多学科研究方法的下一阶段的开始:分子神经科学的出现、重组 DNA 技术和分子遗传学在神经生物学问题中的应用,以及神经科学与其他生物科学在共同的知识框架内的统一(Ciaranello 等,1995;Lander 和 Weinberg,2000)。
摘要 大脑设计的许多方面可以理解为进化驱动力追求代谢效率的结果。除了神经计算和传输的能量成本外,实验证据表明突触可塑性在代谢上也要求很高。由于突触可塑性对于学习至关重要,我们研究了这些代谢成本如何进入学习。我们发现,当突触可塑性规则被简单实施时,训练神经网络在存储许多模式时需要大量的能量。我们提出,通过精确平衡不稳定形式的突触可塑性与更稳定的形式来避免这种情况。这种算法称为突触缓存,可成倍提高能源效率,可与任何可塑性规则一起使用,包括反向传播。我们的研究结果对实验观察到的多种形式的神经突触可塑性产生了新的解释,包括突触标记和捕获现象。此外,我们的结果与节能的神经形态设计有关。
突触可塑性,突触在响应活动中随着时间的推移而增强或削弱的能力,在学习,记忆和整体认知功能中起着至关重要的作用。这是神经系统适应性的基本机制。在神经退行性疾病的背景下,突触可塑性的破坏对认知能力下降和神经元功能障碍有显着贡献。了解这些机制提供了治疗疾病的潜在治疗途径,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病和肌萎缩性侧面硬化症(ALS)[1]。