指数多项式在细分中对于重建特定曲线和曲面系列(例如圆锥曲线和二次曲面)至关重要。众所周知,如果线性细分方案能够重现某个指数多项式空间,那么它一定是级别相关的,其规则取决于定义所考虑空间的频率(以及最终的多重性)。本文讨论了一种通用策略,该策略利用湮灭算子直接从给定数据中局部检测这些频率,从而选择要应用的正确细分规则。这是构建自适应细分方案的第一步,该方案能够局部重现属于不同空间的指数多项式。本文在一个涉及经典蝴蝶插值方案的例子中明确展示了所提策略的应用。这个特定的例子是对 Donat 和 L´opez-Ure˜na (2019) 中针对单变量情况所做工作的概括,这启发了这项研究。
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
8 结点放置策略 9 8.1 手动方法 . ... . ... . 22 8.11 结点初始化和候选结点位置 . . . . . . . . . . 22
马尔可夫链蒙特卡洛(MCMC)方法的实现需要面对两个有趣的挑战:准确表示先验信息和可能性功能的效果。通常可以通过标准减少维度降低技术(例如主成分分析(PCA))来促进先前分布的定义和采样。此外,基于PCA的分解可以基于多项式混沌扩展(PCE)实现准确的替代模型。wever,具有鲜明对比的内在地质先验可能需要先进的维度减少技术,例如深生成模型(DGM)。尽管适用于先前的抽样,但这些DGM对替代建模构成了挑战。在此贡献中,我们提出了一种MCMC策略,该策略将DGM的高重建性能以变量自动编码器的形式与PCA – PCE替代建模的准确性相结合。此外,我们还引入了一个具有物理信息的PCA分解,以提高准确性并减少与替代建模相关的综合负担。在使用通道的子表面结构的贝叶斯地面雷达旅行时间断层扫描的背景下,我们的方法是例证的,提供了准确的重建和显着的加速速度,尤其是当全相正向模型的计算计算时。
许多研究人员都研究了这些特殊矩阵,涉及递归序列,例如斐波那契,卢卡斯,佩尔,平衡数字等。在过去的几十年中,但研究人员仍然非常感兴趣。例如,Akbulak和Bozkurt [1]获得了Toeplitz矩阵的规范,并带有斐波那契和卢卡斯号的条目。然后S。Shen [19]和A.daäSdemir[6]分别将这项研究扩展到K-fibonacci和K-lucas数量,以及Pell和Pell-lucas数量。另外,Solak和Bahsi [20]获得了涉及斐波那契和卢卡斯数的汉克尔矩阵的光谱规范的规范和边界。这项研究已扩展到其他数字序列,可以看到[3,9,10,15,21,22,24]。这些类型的特殊矩阵在各个领域都有广泛的应用,例如图像处理,振动分析,加密等。[14,16,23]。
2特征方程式| λi -d f(x,µ)| = 0,其中d f(x,µ)是(x,µ)系统的雅各布矩阵,具有一对假想的根(λ(x,µ),λ(x,x,µ)),没有其他根部的根。99k(x,µ)Hopf Equilibria
摘要 - 针对分布(OOD)样本的鲁棒性是轨迹预测模型的关键性能指标。但是,最先进(SOTA)模型的开发和排名是由其在单个竞争数据集上的分布(ID)性能驱动的。我们提出了一个OOD测试协议,该协议在两个大规模运动数据集中均质化数据集和预测任务。,我们基于模型的输入和输出侧的代理轨迹和道路几何形状的多项式表示引入了一种新颖的预测算法。随着模型大小,训练工作和推理时间的较小,我们到达Sota Performence进行ID测试,并显着提高OOD测试中的鲁棒性。在我们的OOD测试方案中,我们进一步研究了SOTA模型的两种增强策略及其对模型概括的影响。强调ID和OOD性能之间的对比度,建议将OOD测试添加到轨迹预测模型的评估标准中。
摘要 — 当轨迹类型已知时,可以使用数学方法计算机器人操纵器的轨迹规划。然而,由于复杂的数学方程和推导,传统的数学方法变得难以实现。本研究介绍了使用人工神经网络 (ANN) 来克服这些限制,通过求解非线性函数并适应轨迹规划的特点。本研究利用虚拟三自由度 (DOF) 机器人操纵器。将对 ANN 的超参数进行分析和选择,以获得 ANN 的最佳性能。最后,将使用样本数据通过将实际结果(数学方法)与 ANN 结果进行比较来评估开发的 ANN 拓扑的稳健性。 索引术语 — 人工神经网络、正向运动学、轨迹规划、机器人操纵器