乳腺癌易感性基因1(BRCA1)和乳腺癌易感性基因2(BRCA2)有害变体是第一个,如今,Poly(ADP)核糖聚合酶(PARP) - 抑制剂(PARPIS)的主要生物标志物。最近,增加了用于咨询和多基因面板测试的个体数量,而批准的PARPI的显着扩展,不仅限于BRCA1/BRCA2促成变体(PVS),因此对非BRCA生物标志物产生了强大的临床需求。存在当前测试和测定的重大局限性。确定同源重组缺乏症(HRD)的不同方法,例如种系和体细胞同源重组修复(HRR)基因PVS,测试显示出其后果,例如基因组疤痕,例如新颖的功能分析,例如在RAD51焦点测试中,不应将其视为替代性,并且在范围内被视为替代方法。非BRCA,HRD相关的肿瘤中的PARPI。今天,对HRR参与的所有蛋白质(不限于BRCA)之间的重要关系的更深层次的了解扩大了成功的非BRCA,HRD-PARPI合成致死性的可能性,同时,还需要增强对HRD生物标志物的定义,以预测PARPI受益的幅度。
PDAC 肿瘤的基因组测序研究表明,高达 15% (4) 的肿瘤存在缺陷,由于 DNA 修复缺陷而导致基因组不稳定 (5)。DNA 修复途径对于保护细胞免受外源性和内源性 DNA 损伤至关重要。这些途径在癌细胞中经常出现功能障碍,导致 DNA 损伤积累和基因组不稳定 (6)。同源重组缺陷 (HRD) 是一种复杂而动态的肿瘤表型,其特征是无法通过同源重组修复 DNA 中的双链断裂 (DSB)。另一个高度保守的 DNA 修复过程是涉及单链 DNA 断裂的碱基切除修复途径。聚 (ADP-核糖) 聚合酶 (PARP) 酶是该途径的关键元素。约 5–8% 的 PDAC 与 BRCA1/2 致病性种系变异有关,导致 BRCA 功能缺陷,因此更依赖 PARP 进行 DNA 修复;如果这些患者对含铂化疗的一线治疗有反应,他们可以从 PARP 抑制剂的维持治疗中受益 (7)。在此,我们根据叙述性综述报告清单(可访问 https://jgo.amegroups.com/article/view/10.21037/jgo-23-85/rc)对 PDAC 中的 HRD 进行了综述。
基因组编辑工具箱对于探索和利用非常规酵母物种作为细胞工厂至关重要,因为它们促进了基因组研究和代谢工程。非常规酵母中间假丝酵母 (Candida intermedia) 是一种在生物技术上很有趣的物种,因为它能够将多种碳源(包括林业和奶制品行业废弃物和侧流中的木糖和乳糖)转化为增值产品。然而,由于缺乏针对该物种的分子工具,迄今为止,进行基因操作的可能性有限。我们在此描述了一种针对中间假丝酵母 (C. intermedia) 的基因组编辑方法的开发,该方法基于电穿孔和基因删除盒,其中包含白色假丝酵母 NAT1 显性选择标记,两侧是与目标基因座同源的 1000 个碱基对序列。针对 ADE2 基因的线性删除盒最初导致的靶向效率 < 1%,这表明中间假丝酵母 (C. intermedia) 主要使用非同源末端连接来整合外来 DNA 片段。通过开发一种基于分裂标记的 C. intermedia 缺失技术,我们成功提高了同源重组率,实现了高达 70% 的靶向效率。对于无标记缺失,我们还将分裂标记盒与重组酶系统结合使用,从而能够通过标记回收构建双缺失突变体。总体而言,分裂标记技术被证明是一种快速可靠的 C. intermedia 基因缺失方法,这为揭示和增强其细胞工厂潜力提供了可能性。
CRISPR/Cas 能够对包括模型硅藻 Thalassiosira pseudonana 在内的许多不同植物和藻类进行靶向基因组编辑。然而,迄今为止,仅报道了通过同源重组 (HR) 实现的有效基因靶向适用于单倍体生命周期阶段的光合生物。在这里,使用 Golden Gate 克隆组装的 CRISPR/Cas 构建体能够在二倍体光合生物中实现高效的 HR。使用序列特异性 CRISPR/Cas 并与 dsDNA 供体基质配对,在 T. pseudonana 中诱导同源重组,从而用抗性盒 (FCP: NAT) 替换 silacidin、硝酸还原酶和脲酶基因。通过嵌套 PCR 筛选出高达约 85% 的 NAT 抗性 T. pseudonana 菌落对 HR 呈阳性。使用反向 PCR 方法确认了 FCP: NAT 在每个位点的精确整合。硝酸还原酶和尿素酶基因的敲除分别影响了硝酸盐和尿素的生长,而 T. pseudonana 中 silacidin 基因的敲除导致细胞尺寸显著增加,证实了该基因在中心硅藻中调节细胞尺寸的作用。HR 的高效基因靶向使 T. pseudonana 像 Nannochloropsis 和 Physcomitrella 一样易于遗传处理,从而迅速推进了功能性硅藻生物学、生物纳米技术和生物技术应用,这些应用旨在利用硅藻的代谢潜力。
摘要 水平基因转移 (HGT) 可以使一种细菌物种中进化的性状转移到另一种细菌物种中。这有可能迅速促进新的适应轨迹,例如人畜共患疾病转移或抗生素耐药性。然而,要做到这一点,需要在给定的时间范围内消除重组障碍。这些障碍中最重要的是生态环境不同的物种在不同的生态位中的物理分离。在弯曲杆菌属中,存在生态环境各异的物种,从很少孤立的单宿主专化者到多宿主通化者,它们是人类细菌性胃肠炎最常见的全球病因。在这里,通过表征这些对比鲜明的生态环境,我们可以量化自然种群中同域和异域物种的 HGT。通过分析 30 种弯曲杆菌基因组中的受体和供体种群血统,我们发现在同一宿主中共存可导致物种间的 HGT 增加六倍。这占特定物种内所有 SNP 的 30%,并识别出具有宿主适应性和抗菌素耐药性等功能的高度重组基因。正如在一些动物和植物物种中所描述的那样,生态因素是细菌物种形成的主要进化力量,宿主景观的变化可以通过 HGT 促进不同物种的部分趋同。
抽象类开关重组产生的不同的抗体同种型对鲁棒的适应性免疫系统至关重要,并且缺陷与自身免疫性疾病和淋巴瘤相关。在类开关重组期间需要转录才能募集胞苷脱氨酶AID(这是形成DNA双链断裂的重要步骤),并强烈诱导了免疫球蛋白重链链基因座内的R环形成。但是,R回路对上课开关重组期间双链断裂形成和修复的影响尚不清楚。在这里,我们报告说,缺乏参与R环去除的酶的细胞 - 纳经素和RNase H2 - 证明在免疫球蛋白重链重链链路上增加了R环的形成和基因组不稳定性,而不会影响其转录活性,辅助招募或类转换的重组效率。senataxin和RNase H2缺陷型细胞在开关连接处也表现出增加的插入突变,这是替代末端连接的标志。重要的是,在缺乏鼻蛋白酶或RNase H2b的细胞中未观察到这些表型。我们提出,Senataxin用RNase H2冗余起作用,以介导及时的R环去除,从而促进有效的修复,同时抑制辅助依赖性基因组不稳定性和插入诱变。
我们使用半经典方法研究了通过分子阳离子对电子的激光辅助解离重组的过程。在反应球以外的区域中,对组合激光和库仑领域中的电子运动经过经典处理。在球体内忽略了激光效果,重组概率是从针对无激光过程计算的量子机械横截面获得的。在强度2.09 GW / cm 2和波长22的场中,进行了特定的计算,以进行H + 2的分离重组。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。 还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。 尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。
摘要 之前,我们描述了大量果蝇菌株,每个菌株都携带一个人工外显子,其中包含一个基于 CRISPR 介导的同源重组插入目标基因内含子中的 T2AGAL4 盒。这些等位基因可用于多种应用,并且已被证明非常有用。最初,基于同源重组的供体构建体具有较长的同源臂(>500 bps),以促进大型构建体(>5 kb)的精确整合。最近,我们表明,供体构建体的体内线性化使得能够使用短同源臂(100-200 bps)将大型人工外显子插入内含子中。较短的同源臂使得商业合成同源供体成为可能,并最大限度地减少了供体构建体生成的克隆步骤。不幸的是,大约 58% 的果蝇基因缺乏适合所有注释异构体中人工外显子的编码内含子整合。在这里,我们报告了新构建体的开发,这些构建体允许用 KozakGAL4 盒替换缺乏合适内含子的基因的编码区,从而产生与目标基因类似地表达 GAL4 的敲除/敲入等位基因。我们还开发了定制载体骨架,以进一步促进和改善转基因。在包含目标基因 sgRNA 的定制质粒骨架中合成同源供体构建体,无需注射单独的 sgRNA 质粒,并显著提高了转基因效率。这些升级将使几乎所有果蝇基因都能靶向,无论外显子-内含子结构如何,成功率为 70-80%。
HR 比 NHEJ 慢得多,NHEJ 可以从 DSB 事件中拯救更多细胞。NHEJ 几乎不需要或根本不需要末端切除来直接重新连接 DSB 末端。相比之下,HR 需要短距离切除和长距离切除 DSB 以及供体来实施修复过程。此外,其他蛋白质也可能是 HR 修复途径的限制因素 [18, 19]。我们在此发现,在同时删除两个基因和整合多个片段期间,将 MRE11 与 CAS9 融合可提高 CFU 数量
抽象的减数分裂驱动超级基因是链接基因座等位基因的复合物,共同颠覆了孟德尔的隔离,从而产生了优先传播。在男性中,最常见的驱动器机制涉及一对替代等位基因之一的精子的破坏。虽然至少两个基因座对于雄性驱动器(驱动器和目标)很重要,但连接的修饰符可以增强驱动器,从而产生抑制重组的选择压力。在这项工作中,我们研究了常染色体,多焦点,男性减数分裂驱动系统,果蝇果蝇果蝇中的隔离变形(SD)的发展和基因组后果。在非洲人群中,主要的SD染色体变体SD-MAL的特征是两个重叠的,对染色体ARM 2R上的偏心反转,几乎完美(〜100%)传播。我们详细研究了SD-MAL系统,探索其成分,染色体结构和进化史。我们的发现表明,最近的染色体规模的选择性扫描是由强烈的上位型选择的单倍型,主要驾驶等位基因,主要驾驶等位基因和一个或多个因素。尽管大多数SD-MAL染色体都是纯合子致死的,但SD-MAL单倍型可以与其他染色体重组,并通过交叉通过基因转换与Wildtype染色体补充单倍型。SD-MAL染色体具有累积的致命突变,过量的非同义突变和过量的转座元件插入。因此,SD-MAL单倍型作为一种小的半分离亚群演变,具有强烈的选择史。这些结果可以解释世界各地不同人群中SD单倍型的进化周转,并广泛地暗示了超速进化。