双子座科的家族由500多个可以感染众多双核和单子植物的圆形单链(SS)DNA病毒物种组成。双子病毒利用宿主的DNA复制机制,在植物细胞的核中复制其基因组。将其DNA转化为双链DNA,随后复制,这些病毒依赖于宿主DNA聚合酶。但是,此过程的第一步的启动,即传入的圆形ssDNA转化为dsDNA分子,已经难以捉摸近30年。In this study, sequencing of melon ( Cucumis melo ) accession K18 carrying the Tomato leaf curl New Delhi virus (ToLCNDV) recessive resistance quantitative trait locus (QTL) in chromosome 11, and analyses of DNA sequence data from 100 melon genomes, showed a conservation of a shared mutation in the DNA Primase Large subunit ( PRiL ) of all accessions that对TolCNDV的挑战表现出抵抗力。沉默(天然)烟熏本尼亚人pril以及随后对三种不同的双子病毒的挑战表明,所有三种病毒的滴度都严重减少,完全强调了pril在双子病毒复制中的重要作用。呈现了一个模型,以解释Pril在GESINIVIRAL DNA复制启动中的作用,即 作为原始酶的调节亚基,在DNA复制开始时类似于DNA Primase - 在所有生物体中介导的DNA复制起始。呈现了一个模型,以解释Pril在GESINIVIRAL DNA复制启动中的作用,即作为原始酶的调节亚基,在DNA复制开始时类似于DNA Primase - 在所有生物体中介导的DNA复制起始。
为了提高单个DNA测序结果的性能,研究人员经常使用同一个人和各种统计聚类模型的重复来重建高性能呼叫仪。在这里,考虑了基因组Na12878的三个技术重复,并比较了五个模型类型(共识,潜在类,高斯混合物,kamila - 适应性的K-均值和随机森林),涉及四个性能指标:敏感性,精度,精度,准确性和F1评分。与不使用组合模型相比,i)共识模型提高了精度0.1%; ii)潜在类模型带来了1%的精度改善(97% - 98%),而不会损害灵敏度(= 98.9%); iii)高斯混合模型和随机森林提供了更高精确度(> 99%)但敏感性较低的呼叫; iv)卡米拉提高了精度(> 99%),并保持高灵敏度(98.8%);它显示出最好的总体表现。根据精确和F1得分指标,比较了组合多个呼叫的非监督聚类模型能够改善测序性能与先前使用的监督模型。在比较模型中,高斯混合模型和卡米拉提供了不可忽略的精度和F1得分的改进。因此,可能建议将这些模型用于呼叫集重建(来自生物或技术重复),以进行诊断或精确医学目的。
全脑关联研究 (BWAS) 将个体的表型特征差异与大脑结构和功能的测量结果关联起来,在过去 30 年中已成为连接心智和大脑的主要方法。单变量 BWAS 通常分别测试数万到数十万个大脑体素,而多变量 BWAS 则将跨大脑区域的信号整合到预测模型中。单变量 BWAS 存在许多问题,包括缺乏能力和可靠性,以及无法解释分布式神经回路中嵌入的模式级信息 1–4 。多变量预测模型解决了许多这些问题,并为提供基于大脑的行为和临床状态及特征测量提供了巨大希望 2,3 。在他们最近的论文 4 中,Marek 等人在三个大型神经影像数据集中评估了样本量对单变量和多变量 BWAS 的影响,并得出“BWAS 的可重复性需要数千个个体的样本”的总体结论。我们赞赏他们的全面分析,并且我们同意:(1) 进行单变量 BWAS 时需要大量样本,(2) 多变量 BWAS 会显示出更大的效应,因此更有说服力。Marek 等人 4 发现,多变量 BWAS 提供的样本内关联被夸大了,除非纳入数千名参与者,否则通常无法复制(即没有说服力)。这意味着发现样本的效应大小估计必然被夸大了。然而,我们区分了效应大小估计方法(样本内与交叉验证)和样本(发现与复制),并表明,通过适当的交叉验证,Marek 等人 4 在发现样本中报告的样本内膨胀可以完全消除。通过额外的分析,我们证明,在某些情况下,高质量数据集中的多变量 BWAS 效应可以用小得多的样本量复制。具体而言,将标准多元预测算法应用于人类连接组计划中的功能连接,在 6 种表型中的 5 种测试样本量为 75-500 的情况下产生了可复制的效果(图 1)。这些分析仅限于相对高质量数据集中选定的表型数量(使用单个扫描仪在年轻成年人群中测量),不应过度概括。然而,他们强调,样本量要求的关键决定因素是大脑-表型关系的真实效应大小,并且通过适当的内部验证,可以对中等规模的研究进行适当的效应大小估计和足够大的效应。Marek 等人 4 通过在“发现样本”中训练各种多元模型来评估多元 BWAS 中的样本内效应大小膨胀
真核基因组是由数千个复制起源重复的,这些复制起源是依次形成了复制簇的定义时空模式。DNA反应的时间顺序是通过染色质结构来确定的,并且更具体地通过RIF1稳定的染色质接触来确定。在这里,我们表明RIF1位于新合成的DNA附近。暴露于DNA复制抑制剂蚜虫蛋白的细胞中,RIF1的抗压显着降低了蛋白质在阳性DNA上分离的有效性,这表明蛋白质对蛋白质在新生DNA过程中的分离是由染色质拓扑降低的。RIF1来限制蚜虫治疗诱导的DNA病变的积累,并促进新生DNA附近的粘着素的募集。共同表明,通过RIF1对染色质拓扑的稳定限制了复制 - 相关的基因组不稳定性。
病原性冠状病毒是对全球公共卫生的主要威胁,例如严重的急性呼吸综合症冠状病毒(SARS-COV),中东呼吸综合症冠状病毒(MERS-COV)和新出现的SARS-COV-2,是冠心病2019(Covirus 2019)(Covirus nipery 2019)。我们在本文中描述了冠状病毒3C样蛋白酶(3CLPRO)的一系列抑制剂的结构引导优化,这是一种对病毒复制必不可少的酶。优化化合物在酶测定中使用HUH-7和VERO E6细胞系中的几种人冠状病毒和基于细胞的测定中的几种人冠状病毒有效。两种选定的化合物在培养的原代人气道上皮细胞中显示出对SARS-COV-2的抗病毒作用。在MERS-COV感染的小鼠模型中,病毒感染后1天的铅化合物从0增加到100%,并减少了肺病毒滴度和肺部组织病理学。这些结果表明,这一系列化合物有可能进一步发展为针对人冠状病毒的抗病毒药物。
氨氧化古细菌(AOA)是微生物群落的无处不在成分,并在某些土壤中占据了硝化的第一阶段。当我们开始了解土壤病毒动力学时,我们对那些感染硝基菌的人的组成或活性或其影响过程的潜力不了解。这项研究旨在表征在两种硝化pH的硝化土壤中感染自身噬菌AOA的病毒,这是通过通过DNA稳定的异位素探测和化合物分析转移了同化的CO 2衍生的13 C从宿主到病毒的13 C。将13 C掺入低GC MOL%AOA中,病毒基因组增加了CSCL梯度中的DNA浮力密度,但导致与富含非增强的高GC MOL%基因组共同移民,减少了测序depth和Contig组装。因此,我们开发了一种杂种方法,其中AOA和病毒基因组是从低浮力DNA组装而成的,随后映射13 C同位素富集的高浮力密度DNA读取以识别AOA的活性。元基因组组装的基因组在两种土壤之间是不同的,并且代表了广泛的活性种群。识别64个AOA感染病毒运营分类单元(投票),与先前特征的原核生物病毒没有明确的相关性。这些投票在土壤之间也有所不同,其中42%的富含宿主的13 C富集。大多数人被预测为能够溶裂性,辅助代谢基因包括一种AOA特异性多孔氧化酶,表明感染可能会增强对中央代谢功能所必需的铜摄取。这些发现表明AOA的病毒感染可能是硝化过程中经常发生的过程,可能会影响宿主生理和活性。
通过组蛋白变体CENP-A的存在来定义并保持表观遗传学的定义和维持。尚不完全了解如何指定中心质体CENP-A位置并通过DNA复制确切地保持。 最近发布的端粒到核(T2T)基因组组件包含第一个完整的人类丝粒序列,为检查CENP-A位置提供了新的资源。 在多个细胞分裂之后,在同一细胞系列的克隆中映射CENP-A位置到T2T组装中高度相似的CENP-A位置。 相比之下,在不同人类细胞系的几个centromeres上表现出丝粒CENP-A上乳束,这证明了CENP-A富集的位置和人类细胞之间的KineTochore re裂位点不同。 在整个细胞周期中,通过DNA复制保持了其精确的位置,沉积在G1相中的CENP-A分子。 因此,尽管在DNA复制过程中CENP-A稀释,但CENP-A仍将CENP-A精确地重新加载到子丝粒内的相同序列上,从而在人类细胞中保持独特的丝粒身份。如何指定中心质体CENP-A位置并通过DNA复制确切地保持。最近发布的端粒到核(T2T)基因组组件包含第一个完整的人类丝粒序列,为检查CENP-A位置提供了新的资源。在多个细胞分裂之后,在同一细胞系列的克隆中映射CENP-A位置到T2T组装中高度相似的CENP-A位置。相比之下,在不同人类细胞系的几个centromeres上表现出丝粒CENP-A上乳束,这证明了CENP-A富集的位置和人类细胞之间的KineTochore re裂位点不同。在整个细胞周期中,通过DNA复制保持了其精确的位置,沉积在G1相中的CENP-A分子。因此,尽管在DNA复制过程中CENP-A稀释,但CENP-A仍将CENP-A精确地重新加载到子丝粒内的相同序列上,从而在人类细胞中保持独特的丝粒身份。
Laura KM Hahn A,B, *,Richard Dinga C,Ramona Leenings D,E,Tim Hahn D,James H. Cole F,G. E P,Q,Ali Saffet Gonul R,Ian H. Gotlib S,Roberto Goya-Maldonado T,Nynke A. Groenewold J,Paul Hamilton U,V,Naho Ichikawa W,X,Jonathan C. ,Evgeny A. Osipov I,Brenda WJH Penninx Y,Edith Pomarol-Clotet P,Q,ElenaRodríguez-Cano P,Q,Matthew D. Sacchet Z,Honda W,Shing W,Shing,J A,J A,Sim和Sim和Sim。
DNA 甲基化主要发生在哺乳动物基因组中的胞嘧啶-磷酸-鸟嘌呤 (CpG) 二核苷酸上,并且甲基化景观在有丝分裂细胞分裂期间得以维持。有人假设相邻 CpG 之间维持甲基化活性的耦合对于细胞世代的稳定性至关重要;然而,其中的机制尚不清楚。我们使用数学模型和随机模拟来分析实验数据,这些实验探测细胞中复制后新生 DNA 的全基因组甲基化。我们发现单个 CpG 上的 DNA 甲基化维持率在局部上是相关的,并且这种相关的程度因基因组区域环境而异。通过使用蛋白质沿 DNA 扩散理论,我们表明甲基化率与基因组距离相关性的指数衰减与酶的过程性一致。我们的结果为体内全基因组甲基转移酶的过程性提供了定量证据。我们进一步开发了一种方法来解开动力学相关性的不同机械来源。根据实验数据,我们估计,如果相邻 CpG 平均相距 36 个碱基对,单个甲基转移酶会持续甲基化相邻 CpG。但对于较长的 CpG 间距离,其他耦合机制占主导地位。我们的研究表明,通过将数据驱动的统计分析与假设驱动的数学建模相结合,可以从与复制相关的基于细胞的全基因组测量中获得对酶促机制的定量洞察。
亲本组蛋白及其翻译后修饰被保留下来,并随机与新合成的子 DNA 链结合。亲本组蛋白的修饰通过染色质修饰复合物复制到新沉积的组蛋白上:• 一个亚基识别亲本组蛋白上的修饰 • 另一个亚基催化相邻核小体上的相同修饰。请注意,组蛋白在子 DNA 链上的分布是随机的。