据报道,用于治疗非洲人类锥虫病(美拉胂醇)和利什曼病(五价锑剂、米替福新)的动基体在实地表现出不同程度的耐药性。动基体治疗往往尽可能采用联合疗法,例如用于治疗非洲人类锥虫病的硝呋替莫-依氟鸟氨酸联合疗法,或用于治疗利什曼病的五价锑剂加巴龙霉素/两性霉素 B 或米替福新,这些疗法的疗效和安全性受到密切监测。通过对用于治疗非洲人类锥虫病、恰加斯病和一些用于治疗内脏利什曼病的捐赠药物进行有控制的分发,世卫组织得以支持药物警戒系统,以密切监测这些药物的标准化使用、安全性和疗效。据报道,用于治疗麻风病的大多数药物(氨苯砜、利福平、氟喹诺酮类药物等)也出现了耐药性。全球麻风病消除规划可能是唯一一个有世卫组织明确指导监测抗菌素耐药性和哨点监测系统的被忽视的热带病规划。
摘要:KRAS 是人类最常见的致癌基因之一,但生产直接抑制剂的协同努力大多以失败告终,使 KRAS 获得了“无药可用”的称号。最近生产亚型特异性抑制剂的努力取得了更大的成功,几种 KRAS G12C 抑制剂已进入临床试验,包括 adagrasib 和 sotorasib,它们已显示出对患者有效的早期证据。从其他 RAS 通路抑制剂的经验教训表明,这些药物在体内的效果将因耐药性的产生而受到限制,G12C 抑制剂的临床前研究已发现这方面的证据。在这篇综述中,我们讨论了 G12C 抑制剂的当前证据、对 G12C 抑制剂的耐药机制以及克服它们的潜在方法。我们讨论了联合治疗的可能靶点,包括 SHP2、受体酪氨酸激酶、下游效应物和 PD1/PDL1,并回顾了正在进行的针对这些抑制剂的临床试验。
摘要:蛋白激酶 (PK) 在细胞增殖和存活中起着至关重要的作用,因此其失调是实体和血液系统恶性肿瘤发病机制中的常见事件。靶向 PK 一直是癌症治疗中一种有前途的策略,目前有多种针对 PK 的已获批准的抗癌药物。然而,耐药现象仍然是一个有待解决的障碍,克服耐药性是一个需要实现的目标。慢性粒细胞白血病 (CML) 是第一个也是最好的可以通过分子疗法靶向的癌症例子之一;因此,它可以作为其他癌症的模型疾病。本综述旨在总结有关 PK 抑制疗法耐药性的主要机制的最新知识,并概述正在探索的克服耐药性的主要策略。还将讨论分子诊断和疾病监测在对抗耐药性方面的重要性。关键词:蛋白激酶、慢性粒细胞白血病、酪氨酸激酶抑制剂、合成致死
尽管在弥漫性大 B 细胞淋巴瘤 (DLBCL) 和套细胞淋巴瘤 (MCL) 患者的治疗方面取得了重大进展,但由于耐药性的出现和随后的疾病进展,复发患者的预后仍然很差。迫切需要寻找这些疾病的新靶点和治疗策略。在这里,我们报告 MCL 和 DLBCL 都对转录靶向药物极其敏感,特别是 THZ531,一种细胞周期蛋白依赖性激酶 12 (CDK12) 的共价抑制剂。通过实施药物基因组学和基于细胞的药物筛选,我们发现 THZ531 可抑制致癌转录程序,尤其是 DNA 损伤反应通路、MYC 靶基因和 mTOR-4EBP1-MCL-1 轴,从而有助于体外显著抑制淋巴瘤。我们还从头鉴定和建立了获得性 THZ531 耐药淋巴瘤细胞,这些细胞是由 MEK-ERK 和 PI3K-AKT-mTOR 通路过度激活以及多药耐药性-1 (MDR1) 蛋白上调所致。值得注意的是,EZH2 抑制剂通过竞争性抑制 MDR1 逆转了对 THZ531 的耐药性,并与 THZ531 联合使用,在体外协同抑制了 MCL 和 DLBCL 的生长。我们的研究表明,CDK12 抑制剂单独使用或与 EZH2 抑制剂联合使用,有望成为难治性 DLBCL 和 MCL 的新型有效治疗方法。
摘要化学疗法仍然是大多数固体和血液学恶性肿瘤中治疗的主要手段。对细胞毒性化学疗法的抗性是一个主要的临床问题,并且正在进行实质性研究,以克服这种抗性的潜在方法。一个主要目标是受体酪氨酸激酶MET,在进行多个临床试验的过程中引起了人们日益增加的兴趣。在各种不同的癌症中经常观察到MET的过表达,并且预后不良。研究表明,MET促进了对靶向疗法的抵抗力,包括针对EGFR,BRAF和MEK的抗药性。最近,几份报告表明,MET也有助于细胞毒性化学疗法抗性。在这里,我们回顾了MET在化学疗法耐药性中的作用的临床前证据,该耐药性介导的机制以及MET抑制剂治疗对抗化疗疾病患者的转化相关性。
上个世纪,由于抗生素、卫生和疫苗的引入,人类的预期寿命大大增加,这些都有助于治愈和预防许多传染病。抗菌治疗时代始于 19 世纪,当时人们发现了具有抗菌特性的化合物。然而,在这些新药推出后,微生物开始通过不同的策略产生耐药性。尽管在抗生素推出之前就已经存在耐药机制,但抗生素的大规模使用和滥用增加了耐药微生物的数量。通过水平基因转移快速传播的移动元件,例如携带多种耐药基因的质粒和整合接合元件 (ICE),大大增加了相关多重耐药人类病原体(如金黄色葡萄球菌、淋病奈瑟菌和肠杆菌科)在世界范围内的流行率。如今,抗菌素耐药性 (AMR) 仍然是全球需要解决的主要问题之一,只有全球努力才能找到解决方案。从规模上看,抗菌药物耐药性对经济的影响估计可与 2030 年全球气候变化的影响相媲美。尽管抗生素仍然是治疗此类感染的必需品,但非抗生素疗法将在限制抗生素耐药性微生物的增加方面发挥重要作用。在非抗生素策略中,疫苗和治疗性单克隆抗体 (mAb) 发挥着战略作用。在这篇综述中,我们将总结抗生素耐药性的演变和机制,以及抗菌药物耐药性对预期寿命和经济的影响。
免疫检查点阻断 (ICB) 可在部分癌症患者中诱导显著且持久的反应。然而,大多数患者表现出对 ICB 的原发性或获得性耐药性。这种耐药性源于肿瘤微环境 (TME) 内多种动态机制的复杂相互作用。这些机制包括遗传、表观遗传和代谢改变,这些改变可阻止 T 细胞运输到肿瘤部位、诱导免疫细胞功能障碍、干扰抗原呈递、促进共抑制分子表达增强以及促进免疫攻击后的肿瘤存活。TME 通过免疫抑制、调节代谢物和异常资源消耗形成免疫抑制网络,从而加剧 ICB 耐药性。最后,患者的生活方式因素(包括肥胖和微生物组组成)会影响 ICB 耐药性。了解导致 ICB 耐药性的细胞、分子和环境因素的异质性对于开发增强临床反应的有针对性的治疗干预措施至关重要。本综合概述重点介绍了可能在临床上可转化的 ICB 耐药性的关键机制。
抗菌素抵抗(AMR)是一个复杂的问题,威胁到全球人类和动物健康,经济和安全。在人类临床实践,兽医医学和养殖动物中,抗生素不明显是问题的主要来源。有越来越多的证据表明,在动物农业中对抗生素的预防和生长促进目的无偶然地使用显着有助于动物相关细菌中AMR的发展。影响是巨大的;奥尼尔(O'Neal)的报告明确预测了到2050年,全球AMR造成的严重死亡率,发病率和灾难性的经济损失。有一个共识,应从一个健康的角度管理AMR,并结合有关人类,动物,食物链和环境中抗生素使用的全面信息。动物和野生动植物生态系统是抗多药(MDR)微生物和抗菌耐药基因(ARGS)的潜在储层,可以通过食物链或直接接触将人类传播给人类。存在质粒编码的抗性基因的存在升级了ARGS快速传播的风险。必须在AMR监视计划中包括并利用从动物病原体中收集的信息作为一个健康框架的一部分,因为人类和动物健康是相互联系的。这可以减少AMR的加速度,并为治疗人类疾病的抗菌剂提供更多选择。
•抗菌耐药性(AMR)是人类,动物(包括野生动植物)和生态系统的重大且新兴的全球问题,并威胁着有效的治疗和预防感染。•抗菌抗性是一个健康1挑战,因为它与人类,家畜,自由放养和圈养的野生动植物和环境有关。•野生动植物中有充分记录的抗菌素耐药性,尽管野生动物不太可能直接暴露于抗菌剂中,而不是家畜或人类。•澳大利亚野生动植物的医学治疗应由兽医仔细监督,并在治疗和管理所有物种的野生动植物时都会考虑AMR。•除非由注册兽医明确规定和“对人类医学至关重要的抗菌药物(CIA)”,否则不得在澳大利亚野生动植物中使用抗生素。•与野生动植物一起工作时,应强调生物安全性和感染预防和控制,以防止或最大程度地减少感染风险。