摘要 — 情绪对人的思维方式和与他人的互动方式有重大影响。它是人的感觉与行为之间的纽带,或者可以说它有时会影响一个人的生活决定。由于情绪及其反映的模式因人而异,因此必须基于对广泛人群区域有效的方法进行探究。为了提取特征并提高准确性,使用脑电波或脑电图信号进行情绪识别需要实施有效的信号处理技术。人机交互技术的各种方法已经存在了很长时间,近年来,研究人员在使用脑信号自动理解情绪方面取得了巨大成功。在我们的研究中,使用 SVM(支持向量机)、KNN(K 最近邻)和高级神经网络模型 RNN(循环神经网络)对从著名的公开数据集 DEAP 数据集收集的脑电图信号进行了几种情绪状态的分类和测试,并使用 LSTM(长短期记忆)进行训练。本研究的主要目的是改进使用脑信号提高情绪识别性能的方法。另一方面,情绪会随着时间而变化。因此,我们的研究也考察了情绪随时间的变化。索引词 — 情绪识别、EEG 信号、DEAP 数据集、fft、机器学习、SVM、KNN、DEAP、RNN、LSTM
神经活动与行为相关变量之间的关系是神经科学研究的核心。当这种关系很强时,这种关系被称为神经表征。然而,越来越多的证据表明,某个区域的活动与相关的外部变量之间存在部分分离。虽然已经提出了许多解释,但缺乏外部变量和内部变量之间关系的理论框架。在这里,我们利用循环神经网络 (RNN) 从几何角度探索神经动力学和网络输出何时以及如何相关的问题。我们发现训练 RNN 可以导致两种动态状态:动态可以与产生输出变量的方向一致,也可以与它们倾斜。我们表明,训练前读出权重大小的选择可以作为状态之间的控制旋钮,类似于最近在前馈网络中的发现。这些状态在功能上是不同的。斜向网络更加异质,并抑制其输出方向上的噪声。此外,它们对沿输出方向的扰动更具鲁棒性。至关重要的是,出于动态稳定性考虑,倾斜状态特定于循环(而非前馈)网络。最后,我们表明,在神经记录中,可以分离出对齐或倾斜状态的趋势。总之,我们的结果为通过将网络动态与其输出相关联来解释神经活动开辟了新视角。
摘要 - 非形态硬件努力模仿大脑样神经网络,因此有望在时间数据流上进行可扩展的低功率信息处理。然而,要解决现实世界中的问题,需要培训这些网络。然而,对神经形态底物的培训会由于特征的特征和基于梯度的学习算法所需的非本地计算而产生显着的挑战。本文为神经形态底物设计实用的在线学习算法设计了数学框架。特别是,我们显示了实时复发学习(RTRL)之间的直接联系,这是一种用于计算常规复发神经网络(RNN)(RNN)的在线算法,以及用于培训跨度尖峰神经网络(SNNS)的生物学上可行的学习规则。此外,我们激励基于障碍物雅各布人的稀疏近似,从而降低了该算法的计算复杂性,减少了非本地信息的要求,并凭经验可以提高学习良好的学习性能,从而提高了其对神经形状子形态的适用性。总而言之,我们的框架弥合了深度学习中突触可塑性与基于梯度的方法之间的差距,并为未来神经形态硬件系统的强大信息处理奠定了基础。
由于记录过程繁琐,脑电图 (EEG) 数据集通常较小且维数较高。在这种情况下,强大的机器学习技术对于处理大量信息和克服维数灾难至关重要。人工神经网络 (ANN) 在基于 EEG 的脑机接口 (BCI) 应用中取得了良好的效果,但它们涉及计算密集型的训练算法和超参数优化方法。因此,虽然质量与成本之间的权衡通常被忽视,但意识到这一点却大有裨益。在本文中,我们将基于遗传算法的超参数优化程序应用于卷积神经网络 (CNN)、前馈神经网络 (FFNN) 和循环神经网络 (RNN),所有这些网络都是故意浅显的。我们比较了它们的相对质量和能量时间成本,但我们也分析了具有相似精度的同类型网络的结构复杂性的变化。实验结果表明,优化过程提高了所有模型的准确率,并且只有一个隐藏卷积层的 CNN 模型可以与 6 层深度信念网络相等或略胜一筹。FFNN 和 RNN 无法达到相同的质量,尽管成本明显较低。结果还强调了这样一个事实,即同一类型网络的大小不一定与准确率相关,因为较小的模型在性能上可以匹敌甚至超越较大的模型。在这方面,过度拟合可能是一个促成因素,因为深度学习方法在有限的训练示例下会遇到困难。
摘要。语音情绪识别(SER)是一个跨学科领域,利用信号处理和机器学习技术来识别和分类通过语音传达的情绪。近年来,由于其在人类计算机互动,医疗保健,教育和客户服务中的潜在应用,SER引起了极大的关注。可以从各种声学特征中推断出幸福,愤怒,悲伤,恐惧,惊喜和厌恶等情绪,包括音高,强度,语音速度和光谱特征。然而,由于诸如说话者的可变性,文化差异,背景噪声和情绪表达的微妙之处等因素,准确地识别语音的情绪是具有挑战性的。本文探讨了语音情感识别的最新方法,重点是深度学习方法,特征提取技术以及使用大规模情感标记的数据集。我们回顾了传统的方法,例如隐藏的马尔可夫模型和支持向量机,并将其与神经网络(尤其是卷积神经网络(CNN))和复发性神经网络(RNN)(RNN)中的现代进步进行比较。此外,我们讨论了该领域的挑战,包括自发言语中的情感检测,跨语性和跨文化识别的影响以及当前基准的局限性。最后,我们提供了SER系统的现实应用程序的概述,包括它们集成到虚拟助手,心理健康诊断和互动娱乐中。我们通过强调多模式情绪识别的新兴趋势,以及未来研究的潜力,以提高不同环境中SER系统的鲁棒性和准确性。
摘要:电荷状态(SOC)估计是安全性能和锂离子(锂离子)电池寿命的重要问题。在本文中,提出了一种强大的自适应在线长期记忆(ROLSTM)方法,以提取电动汽车(EV)中锂离子电池的SOC估计。顾名思义的实时方法是基于一个复发性神经网络(RNN),该神经网络(RNN)包含长期记忆(LSTM)单元,并使用强大和适应性的在线梯度学习方法(ROADAM)进行优化。在拟议的体系结构中,为三个输入中的每一个定义了一个顺序模型:电池的电压,电流和温度。因此,这三个网络并联起作用。使用这种方法,LSTM单元的数量减少。使用此建议的方法,一种不依赖精确的电池模型,并且可以避免复杂的数学方法。此外,与传统的递归神经网络不同,该网络随时重写内容,LSTM网络可以决定通过所提出的网关保留当前的内存。在这种情况下,它可以轻松地将此信息转移到较长的路径上,以接收和维持长期依赖性。使用真实数据库,实验结果说明了与迄今为止使用的神经网络建模和无流感的KalmanFulter方法相比,ROLSTM应用于SOC估算的ROLSTM的性能更好。
摘要 神经活动与行为相关变量之间的关系是神经科学研究的核心。当这种关系很强时,这种关系被称为神经表征。然而,越来越多的证据表明,某个区域的活动与相关的外部变量之间存在部分分离。虽然已经提出了许多解释,但缺乏外部变量和内部变量之间关系的理论框架。在这里,我们利用循环神经网络 (RNN) 从几何角度探索神经动力学和网络输出何时以及如何相关的问题。我们发现训练 RNN 可以导致两种动态状态:动态可以与产生输出变量的方向一致,也可以与它们倾斜。我们表明,训练前读出权重大小的选择可以作为状态之间的控制旋钮,类似于最近在前馈网络中的发现。这些状态在功能上是不同的。斜网络更加异质,并抑制其输出方向上的噪声。此外,它们对输出方向上的扰动更具鲁棒性。至关重要的是,出于动态稳定性考虑,倾斜状态特定于循环(而非前馈)网络。最后,我们表明,在神经记录中,可以分离出对齐或倾斜状态的趋势。总之,我们的结果为通过将网络动态与其输出相关联来解释神经活动开辟了新视角。
肌电图(EMG)信号在生物医学研究中具有重要意义,在上肢的休息和收缩过程中捕获肌肉电活动。它们在应用程序中的多功能性,尤其是在人类辅助机器人工具中,可以驱动持续的探索和研究。本文介绍了一项原始研究,重点是利用机器学习技术来对EMG数据集进行分类,并根据预测的手势有效地控制机器人臂。数据采集涉及战略性地将EMG肌肉传感器放在前臂上,以确保对与手势和运动相关的信号进行精确测量。各种分类器包括随机森林,支持向量机(SVM),K-nearest邻居(KNN),高斯幼稚的贝叶斯,门控复发单元(GRU),长期短期记忆(LSTM),人工神经网络(ANN),复发性神经网络(RNN),卷积神经网络(convolutional Nevolutional Networt),vive(CNN)和赋予了变形金刚(CNN)和变形金刚。的性能结果将通过表格格式进行精心分析和呈现,将VIT分类器展示为最成功的vit分类器,在机器人手臂控制中获得了令人印象深刻的97.7%精度。值得注意的是,ANN,RNN和CNN的精度也超过90%。此外,这项工作与现有文献进行了全面比较,为人类机器人互动和尖端辅助技术的未来进步奠定了基础,这些技术显着提高了运动障碍或残疾人的生活质量。这些发现对基于EMG信号的直观,响应式机器人系统具有重要意义。
应将通讯发送到Junho Jeong:yanyenli@dongguk.edu文章INFO杂志机器和计算杂志(http://anapub.co.co.ke/journals/jmc/jmc/jmc.html)doi:修订表格2022年12月18日; 2022年12月30日接受。2023年4月5日在线可用。©2023作者。由Anapub出版物出版。这是CC BY-NC-ND许可证下的开放访问文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)摘要 - 这项研究调查了在通信网络中使用神经计算技术的使用,并根据错误率,延迟和吞吐量评估其性能。结果表明,不同的神经计算技术,例如人工神经网络(ANN),卷积神经网络(CNN),复发性神经网络(RNN),长期短期记忆(LSTM)和生成的对抗网络(GAN)在提高绩效方面具有不同的权衡。技术的选择将基于应用程序的特定要求。研究还评估了不同通信网络体系结构的相对性能,并确定了与在通信网络中应用不同技术相关的权衡和限制。研究表明,需要进一步的研究来探索技术的使用,例如深度强化学习;在通信网络中,并研究如何使用技术的使用来提高通信网络的安全性和鲁棒性。关键字 - 人工神经网络(ANN),卷积神经网络(CNN),经常性神经网络(RNN),长期短期记忆(LSTM),生成对抗网络(GANS)。
由于记录过程繁琐,脑电图 (EEG) 数据集通常较小且维数较高。在这种情况下,强大的机器学习技术对于处理大量信息和克服维数灾难至关重要。人工神经网络 (ANN) 在基于 EEG 的脑机接口 (BCI) 应用中取得了良好的效果,但它们涉及计算密集型的训练算法和超参数优化方法。因此,虽然质量与成本之间的权衡通常被忽视,但意识到这一点却大有裨益。在本文中,我们将基于遗传算法的超参数优化程序应用于卷积神经网络 (CNN)、前馈神经网络 (FFNN) 和循环神经网络 (RNN),所有这些网络都是故意浅显的。我们比较了它们的相对质量和能量时间成本,但我们也分析了具有相似精度的同类型网络的结构复杂性的变化。实验结果表明,优化过程提高了所有模型的准确率,并且只有一个隐藏卷积层的 CNN 模型可以与 6 层深度信念网络相等或略胜一筹。FFNN 和 RNN 无法达到相同的质量,尽管成本明显较低。结果还强调了这样一个事实,即同一类型网络的大小不一定与准确率相关,因为较小的模型在性能上可以匹敌甚至超越较大的模型。在这方面,过度拟合可能是一个促成因素,因为深度学习方法在有限的训练示例下会遇到困难。