Loading...
机构名称:
¥ 1.0

摘要。语音情绪识别(SER)是一个跨学科领域,利用信号处理和机器学习技术来识别和分类通过语音传达的情绪。近年来,由于其在人类计算机互动,医疗保健,教育和客户服务中的潜在应用,SER引起了极大的关注。可以从各种声学特征中推断出幸福,愤怒,悲伤,恐惧,惊喜和厌恶等情绪,包括音高,强度,语音速度和光谱特征。然而,由于诸如说话者的可变性,文化差异,背景噪声和情绪表达的微妙之处等因素,准确地识别语音的情绪是具有挑战性的。本文探讨了语音情感识别的最新方法,重点是深度学习方法,特征提取技术以及使用大规模情感标记的数据集。我们回顾了传统的方法,例如隐藏的马尔可夫模型和支持向量机,并将其与神经网络(尤其是卷积神经网络(CNN))和复发性神经网络(RNN)(RNN)中的现代进步进行比较。此外,我们讨论了该领域的挑战,包括自发言语中的情感检测,跨语性和跨文化识别的影响以及当前基准的局限性。最后,我们提供了SER系统的现实应用程序的概述,包括它们集成到虚拟助手,心理健康诊断和互动娱乐中。我们通过强调多模式情绪识别的新兴趋势,以及未来研究的潜力,以提高不同环境中SER系统的鲁棒性和准确性。

使用机器学习的语音情感识别

使用机器学习的语音情感识别PDF文件第1页

使用机器学习的语音情感识别PDF文件第2页

使用机器学习的语音情感识别PDF文件第3页

使用机器学习的语音情感识别PDF文件第4页

使用机器学习的语音情感识别PDF文件第5页

相关文件推荐

2025 年
¥2.0
2024 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0