缩写:ASO,反义寡核苷酸;ATTR(v),(遗传性)转甲状腺素蛋白淀粉样变性;CM,心肌病;CRISPR,基因编辑技术(靶向基因敲除);D/C,停产;GalNAc,三天线N-乙酰半乳糖胺;IV,静脉内;LNP,脂质纳米颗粒;PN,多发性神经病;SC,皮下;siRNA,小干扰RNA(核糖核酸);Q3M,每3个月一次;Q3W,每3周一次;Q4W,每4周一次;QW,每周一次。a ASO导致RNase-H1介导的mRNA降解,siRNA导致Ago2介导的mRNA降解,CRISPR-Cas9导致DNA基因编辑。 b 截至 2022 年 5 月。c Eplontersen 也称为 ION-682884、IONIS-TTR-LRx 和 AKCEA-TTR-LRx。d 体重 <100 公斤患者的剂量;体重 ≥ 100 公斤患者的剂量为 30 毫克;e Vutrisiran 也称为 ALN-TTRsc02。f 正在进行剂量递增试验。
ANGPTL4 有助于患者生存,特别是它如何通过可能在耐药性中发挥作用来改变生存结果。我们使用 CRISPRa (MP2_ANGPTL4_OE) [21] 和 siRNA 敲低 (MP2_ANGPTL4_KD) 测量了 ANGPTL4 在 MIA PaCa-2 细胞系中过表达和敲低的影响。qPCR 显示,与非靶向对照向导相比,CRISPRa 成功地将 ANGPTL4 转录物的表达提高了 8 倍。同样,siRNA 敲低使对照系的表达降低了 90% 以上(图 1B,补充表 S1)。蛋白质水平受到类似影响(补充图 S1B)。我们使用 RNA 测序测量了修饰细胞系和对照的全局基因表达变化,结果显示 1198 个差异表达基因 (DEG) 符合以下标准:它们的平均读取数大于 10,绝对 log 2 倍变化 (log2FC) 至少
基于 RNA 的疗法(例如 mRNA、siRNA、microRNA、ASO 和 saRNA)在肿瘤治疗方面具有巨大潜力。RNA 修饰和递送系统的开发和优化使得 RNA 货物能够在体内稳定高效地递送,从而引发抗肿瘤反应。目前已有具有多种特异性和高效性的靶向 RNA 疗法。在这篇综述中,我们讨论了基于 RNA 的抗肿瘤疗法的进展,包括 mRNA、siRNA、miRNA、ASO、saRNA、RNA 适体和基于 CRISPR 的基因编辑。我们重点关注 RNA 药物的免疫原性、稳定性、翻译效率和递送,并总结了它们的优化和递送系统的开发。此外,我们还描述了基于 RNA 的疗法诱导抗肿瘤反应的机制。此外,我们还回顾了 RNA 货物的优点和局限性及其对癌症的治疗潜力。
- 图1。根据完整的母体药物结构(包括TAG修饰,寡核苷酸序列)自动生成MS搜索文库(在siRNA序列的情况下包含感官和反义链),核酸酶动作和预定义的代谢反应,从而实现全面的代谢概况。
图1。PSUPER-BRG1 siRNA表达质粒的序列分析。(a)大写字母指示DNA插入物的顺序,下部案例字母表示来自psuper载体的侧翼序列。打开箭头标记倒重复序列。一个BSMB I识别站点(盒装)将裂解在中间的“环”区域内用箭头指示的位置。填充箭头指示使用T7和T3引物进行测序反应的方向。(b)使用T7和T3-primers的未消除PSUPER-BRG1质粒的DNA测序色谱图。(c)用BSMB I消化后PSUPER-BRG1质粒的DNA测序色谱图(d)DNA二级结构预计会在siRNA编码区域内发生,这是由于倒置重复序列的序列互补性。测序反应过早终止的位置用开放箭头指示。实心箭头表示用BSMB I消化后的模板末端测序反应的径流终止。
实现寡核苷酸的特定目标递送,无论是疾病部位,特定组织还是器官,对于增强治疗精度并最大程度地降低了脱靶效应至关重要。通过化学修饰的寡核苷酸和纳米颗粒等先进方法促进了这种精确的递送,对提高治疗效果具有巨大的希望。寡核苷酸和基因,尤其是mRNA,siRNA,反义RNA和CRISPR-CAS9系统,是传统治疗方式的替代方案。本期特刊旨在汇编研究文章和审查以癌症为癌症,靶向组织和器官靶向寡核苷酸的传递。特别重点放在修饰的mRNA,siRNA,反义RNA,CRISPR-CAS9,microRNA,质粒DNA和DNA,以及涉及纳米颗粒,树枝状聚合物和LNP的有效递送系统。了解寡核苷酸的结构和化学修饰,再加上成功的包装系统,对于在这个迅速前进的领域中成功的基因治疗是至关重要的。我们期待收到您的提交。
我们非常感兴趣地阅读了Hum等[1]的文章,该文章回顾了MicroRNA(miRNA)thera-peutics的进步(包括miRNA模拟物和抑制剂),用于研究和临床实践,用于治疗病毒感染,尤其是COVID-19。该文章提出了Curing Covid-19的视角。然而,基于对miRNA和Covid-19的可用研究(包括文章,公司报告和临床试验),我们不能对miRNA分子的可药用性和可目标性感到乐观。重要的事实是,自1993年发现伴侣并揭示其功能时[2],美国FDA从未批准或打算批准任何基于miRNA的治疗剂(或药物)来治疗任何疾病。miRNA是内源性和调节性RNA分子。关于miRNA的研究最近非常受欢迎,已经导致了数十万个出版物,但该研究并未针对治疗疾病。迄今为止,miRNA似乎已经非常无效。与小型干扰RNA(siRNA)相比,分子与miRNA几年后发现的miRNA相似,miRNA似乎对科学界的期望较少。早在2006年,发现RNA间断的科学家(包括通过siRNA技术干扰)被授予诺贝尔生理学或医学奖。截至2021年,美国FDA已批准了三种基于siRNA的药物(Patisiran [3],Givosiran [4]和Lumasiran [5]),并且在第3阶段临床试验中,其他许多药物也在。但是,对于miRNA来说,情况并不乐观。首先,
Ago2,argonaute 2;又名;ASO,反义寡核苷酸;mRNA,信使 RNA;RISC,RNA 诱导沉默复合物;RNase H1,核糖核酸酶 H1;siRNA,小干扰 RNA。图片改编自:Ginsburg 等人 (2017),基因组和精准医学基础,翻译和实施。爱思唯尔
核酸疗法具有沉默,表达或编辑基因的巨大潜力。然而,基于核酸的药物需要化学修饰和复杂的纳米技术,以防止其降解,减少免疫刺激作用并确保细胞内递送。脂质纳米颗粒(LNP)技术是当前的黄金标准输送平台技术,它已使第一种siRNA药物Onpattro和COVID-19-19-MRNA疫苗的临床翻译能够进行临床翻译。尽管如此,目前批准的LNP系统主要适合静脉内治疗后地方给药或肝脏输送后的疫苗目的。在这里,我引入了一个基于天然脂蛋白的纳米传递平台,该平台防止了小型干扰RNA(siRNA)的过早降解,以确保其靶向和细胞内递送到造血茎和祖细胞和祖细胞(HSPC)中。建立了稳定地融入其核心的原型载脂蛋白脂质纳米颗粒(ANP)后,我们构建了一个全面的库,我们彻底地表征了单个ANP的物理化学特性。在对所有制剂进行体外筛选后,我们选择了八个代表图书馆多样性的siRNA-ANP,并确定了它们使用乱伦施用方案在小鼠中的免疫细胞亚群中沉默溶酶体相关的膜蛋白1(LAMP1)的能力。我们的数据表明,使用不同的ANP,我们可以在免疫细胞亚群及其骨髓祖细胞中实现功能基因沉默。除了基因沉默之外,ANP平台接合免疫细胞的固有能力为其提供了巨大的潜力,可以将其他类型的核酸疗法传递给HSPC。
分子疗法使用基于核酸的治疗剂,成为对传统药物方法无反应的疾病条件的有前途的替代方法。反义寡核苷酸(ASO)和小干扰RNA(siRNA)是用于调节基因表达的两种众所周知的策略。靶向RNA的疗法可以精确地调节目标RNA的功能,具有最小的脱靶效应,并且可以基于序列数据进行合理设计。ASO和基于siRNA的药物具有在目标患者群体中使用的独特功能,或者可以作为患者抑制的N-ef-1治疗方法量身定制。反义疗法不仅可以用于治疗单基因疾病,而且还可以通过靶向涉及疾病发病机理的关键基因和分子途径来解决多基因和复杂疾病。在内分泌疾病的背景下,分子疗法在调节病原机制(例如缺陷胰岛素信号传导,β细胞功能障碍和激素失衡)方面特别有效。此外,siRNA和ASO具有下调过度活跃的信号传导途径,这些信号传导途径有助于复杂的,非发育性内分泌疾病,从而以分子起源解决这些疾病。ASOS还在全球范围内被研究为开发N-1-1疗法疗法的独特候选者。当寡核苷酸可以靶向患者的精确突变序列时,序列 - 特异性ASOS结合在N-OF-1方法中提供了非凡的精度。在这篇综述中,我们专注于内分泌系统的疾病,并讨论包括单基因β细胞糖尿病和肥胖症在内的糖尿病中潜在靶向RNA的治疗机会,包括综合征肥胖